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SUMMARY

The orbitofrontal cortex (OFC) has long been impli-
cated in signaling information about expected out-
comes to facilitate adaptive or flexible behavior.
Current proposals focus on signaling of expected
value versus the representation of a value-agnostic
cognitive map of the task. While often suggested
as mutually exclusive, these alternatives may
represent extreme ends of a continuum determined
by task complexity and experience. As learning
proceeds, an initial, detailed cognitive map might
be acquired, based largely on external information.
With more experience, this hypothesized map can
then be tailored to include relevant abstract hidden
cognitive constructs. The map would default to an
expected value in situations where other attributes
are largely irrelevant, but, in richer tasks, a more
detailed structure might continue to be repre-
sented, at least where relevant to behavior. Here,
we examined this by recording single-unit activity
from the OFC in rats navigating an odor sequence
task analogous to a spatial maze. The odor se-
quences provided a mappable state space, with
24 unique ‘‘positions’’ defined by sensory informa-
tion, likelihood of reward, or both. Consistent with
the hypothesis that the OFC represents a cognitive
map tailored to the subjects’ intentions or plans,
we found a close correspondence between how
subjects were using the sequences and the
neural representations of the sequences in OFC
ensembles. Multiplexed with this value-invariant
representation of the task, we also found a repre-
sentation of the expected value at each location.
Thus, the value and task structure co-existed
as dissociable components of the neural code
in OFC.
Current B
INTRODUCTION

It is widely believed that the orbitofrontal cortex (OFC) is part of a

neural circuit signaling information about future outcomes [1]. But

what is the OFC’s role in that network? What information does it

provide exactly? One proposal is that theOFC compresses infor-

mation about these future events down to their ‘‘economic’’ value

[2]. Another is that theOFC represents a cognitivemapof the cur-

rent state space [3, 4]—adetailed associativemodel of the causal

relationships betweenevents, useful for determining (but not syn-

onymous with) value [5, 6]. In favor of the former proposal, neural

correlates of value are ubiquitous in OFC, generally dominating

the neural code in rodents, monkeys, and humans [7–20]. Yet,

the tasks used in recording studies typically employ designs

and heavy training to randomize, trivialize, or otherwise make

irrelevant everything but the value available on a given trial;

when this is not done, neural correlates of value-neutral and

even incidental associations are evident [21–24]. Further, the

OFC is generally only necessary for value-based behavior when

the relevant value depends on the sort of mental simulation that

traditionally is thought to require a cognitive map [25–30].

Oneway to reconcile these two seemingly opposing ideas is to

view them as extreme ends of a continuum determined by the

complexity of the environment and the subject’s experience in

it. Clearly, a naive subject cannot have much of a cognitive

map. However, learning that happens in a few trials (or even a

single trial) shows that a cognitive map can be rapidly initialized

with potentially relevant relationships, and, in the initial phase of

sensory preconditioning, OFC neurons acquire representations

of seemingly incidental sensory-sensory associations [21]. As

training proceeds, such a map might be pruned or edited

down to increasingly abstract cognitive constructs, according

to the subject’s understanding of the structure of the environ-

ment at any particular time. The resultant map might appear to

represent value in simple situations while maintaining a great

deal of complexity and specificity about prior and future events

when these are relevant to the desires of the subject in more

complex settings.

Here, we tested this prediction in rats by recording single-unit

activity from the OFC during the performance of an odor
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Figure 1. Task Design, Histology, and Behavioral Performance

(A) Schematic illustrating a single trial from the odor sequence task. Illumination of an overhead light indicated the start of each trial. After poking into the odor port

and sampling one of 16 odors, rats made a ‘‘go’’ or ‘‘no-go’’ decision based on the current odor identity and prior sequence information. Only correct ‘‘go’’ trials

led to a liquid reward.

(B) The 16 odors were organized into two pairs of sequences (S1 and S2, each comprising two subsequences a and b). Each sequence consisted of 6 discrete

positions marked by the odors (blue = rewarded, red = non-rewarded). The odors defining the first two positions (P1, P2) were unique in each sequence, while the

odors defining the last four positions (P3–P6) were the same across pairs of sequences (S1a, S1b, S2a, and S2b). The trial sequence alternated between S1 and

S2, with approximately equal transitions between the subsequences.

(C) Reconstruction of recording locations in the OFC. Red boxes indicate the approximate location of recording sites. We recorded 1,078 single units from 7 rats.

(D) Animals’ performance was assessed by percentage correct responding (%Correct) on each trial type (n = 73 sessions). At P3, P4, and P5, the percentage

correct was significantly different between S2a and S2b (p = 1.73 10�5, 2.23 10�16, 8.43 10�13; W = 4,472.5, 7,386, 3,680.5, respectively; two-sidedWilcoxon

rank-sum test; n = 73 sessions).

(E) Reaction time from withdrawing from the odor port (‘‘unpoke’’) to the entry of water port (‘‘choice’’). Reaction time on go trials was significantly lower than that

on no-go trials (p = 1.73 10�25; W = 2,701; two-sidedWilcoxon rank-sum test). The reaction time was also significantly different between S2a and S2b at P3, P4,

and P5 (p = 7.8 3 10�5, 1.3 3 10�20, 4.2 3 10�23; W = 4,552, 2,996, 7,883, respectively; two-sided Wilcoxon rank-sum test; n = 73 sessions).

(F) Poke latency from light onset to poking into the odor port measures animals’ motivation to initiate a trial (left panel). The poke latencies were significantly

different between S2a and S2b at P3, P4, P5, and P6 (p = 2.6 3 10�8, 2.2 3 10�11, 4.1 3 10�15; 0.013; W = 3,942, 3,655, 7,372, 6,001 respectively; two-sided

Wilcoxon rank-sum test; n = 73 sessions). Plotting poke latency against time-discounted reward (right panel) showed that poke latency on rewarded trials was

significantly less than that on no-reward trials, meaning that rats spent much less time initiating a ‘‘go’’ trial (p = 6.5 3 10�236; W = 420,567; two-sided Wilcoxon

rank-sum test; n = 73 sessions). In addition, statistical analyses on adjacent bars showed that poke latency was also negatively modulated by future reward

versus non-reward (p = 0.16, 1.5 3 10�17, 5.9 3 10�15, 0.64, 6.5 3 10�27, 0.065, 0.57; W = 14,490, 83,436, 68,957, 86,362.5, 92,495, 59,118, 52,978 for

consecutive pairs of bars from left to right, respectively; two-sided Wilcoxon rank-sum test; n = 73 sessions). Further three-way ANOVA analysis revealed that

reward on current, next, and next + 1 trials significantly affected poke latency (current: F(1, 1,745) = 2,800, p = 0; next: F(1, 1,745) = 128.1, p = 1.03 10�28; next + 1:

F(1, 1,745) = 10.1, p = 0.0015). There were also significant interactions between them (current 3 next: F(1, 1,745) = 84.5, p = 1.0 3 10�19; current 3 next + 1:

F(1, 1,745) = 41, p = 1.93 10�10; next3 next + 1: F(1, 1,745) = 15, p = 1.13 10�4). P1–P6 refers to the position in the 6-trial sequences; data from sequence-pair 1

are plotted upward and data from sequence-pair 2 are plotted downward.

For (D)–(F). the error bars are SEMs across all sessions included in the ensemble analyses. *p < 0.05, ***p < 0.001 and blue = rewarded, red = non-rewarded. See

also Figures S1 and S2.
sequence task [31]. The task was based on a standard go/no-go

discrimination task (Figure 1A), well documented to engage

value coding in the OFC [32–38]. However, rather than present-

ing the odors pseudorandomly, we presented them in 6-trial se-

quences, intentionally confounding structural information about

sequence and value. There were 4 sequences arranged in two

pairs. Each sequence pair was analogous to an inverted

T-maze, beginning with a pair of unique ‘‘arms’’ in which the

odors differed, followed by a single common ‘‘arm’’ in which
898 Current Biology 29, 897–907, March 18, 2019
the odors were identical (Figure 1B). Conceptually, this resulted

in 24 unique ‘‘positions’’ defining the global cognitive map or

state space of the task. Within this state space, some positions

were defined by external, observable information (unique odors),

while others were defined only by reference to internal, unob-

servable information (memory of the prior sequence of odors).

Importantly, in one sequence pair (Figure 1B, top), the shared

or common odors were associated with the same actions and

rewards, while in the other sequence pair (Figure 1B, bottom),
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Figure 2. Decoding and Clustering of 24 Locations

(A) The two confusion matrices represent two hypothesized models (‘‘Current Value’’ and ‘‘Current Location’’). The y axis represents the ground-truth 24 trial

types, ordered by position (P1–P6) within each sequence (S1a, S1b, S2a, S2b). The x axis represents how these 24 predicted trial types would be classified

according to the hypothesized information (e.g., value or location in the sequences). In the left confusionmatrix, trial types aremisclassified into positions with the

same current value, resulting in a checkerboard pattern. By contrast, in the right confusionmatrix, each trial type has a unique location or state in each sequence,

resulting in a perfect classification along the diagonal.

(B) Confusion matrices from the decoding of 24 trial types from OFC single-unit data in time windows associated with different task events.

(C) Dendrograms show hierarchical clustering of 24 locations at 3 different task events (‘‘Poke,’’ ‘‘Odor,’’ and ‘‘Unpoke’’) based on population neural activities. The

Mahalanobis distance between each pair of trial-type means, which reflects representational dissimilarity or distance between locations, was used to construct

(legend continued on next page)
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actions and rewards on two of the odors in the middle of the

common arm differed depending on which of the unique arms

initiated the sequence. As a result of this arrangement, maintain-

ing separate representations of the current position in the

sequence was necessary for task performance in some se-

quences (and positions), whereas in analogous positions in other

sequences information about which sequence the position is

in was incidental. We analyzed ensemble activity to assess

how well OFC represented the unique positions within each

sequence and the dependence of any such positional or state

representations on external versus internal information and

task relevance or value.

RESULTS

Odor Sequence Task
Seven rats were trained on the odor sequence task described

above, in which knowledge of the position in the sequence

was relevant to—and sometimes required for—optimal perfor-

mance (Figure 1). Rats sampled one of 16 odors on each trial

and made a ‘‘go’’ or ‘‘no-go’’ response to obtain a reward or to

avoid a prolonged inter-trial interval (Figure 1A). The 16 odors

were organized into two pairs of 6-trial odor sequences (Fig-

ure 1B; sequences S1a, S1b, S2a, and S2b). S1a and S1b

were always followed by S2a or S2b and vice versa, and the like-

lihood of a given transition—such as S1a to S2a versus to S2b—

was roughly equal (Figure 1B). The sequences were evenly

distributed within each session, and their overall order was the

same for all rats in all sessions.

Each sequence pair was intended to function like a maze, with

the position being defined by the identity of current and prior

odors in each sequence. The odors in the first 2 positions of

each sequence (P1 and P2) were unique, like the different arms

of a maze, so that they defined a unique position without refer-

ence to the identity of the prior odors. By contrast, the odors in

the other 4 positions (P3–P6) were identical in each sequence

pair, like the common arm of a maze, so that they defined a

sequence-unique position only in concert with the prior odor

cues. Critically, in S1a andS1b, these common odorswere asso-

ciated with actions and rewards that depended only on the cur-

rent odor, whereas in S2a and S2b, opposing actions were

required for and different rewards were predicted by two of the

common odors (in P4 and P5), depending on previous odors

(that is, these odors predicted reward differently in S2a and S2b).

We recorded 1,078 single units from the OFC of rats perform-

ing this task (Figure 1C). During recording, rats were generally

excellent at the task, responding correctly to the cues at each

position in each sequence (Figures 1D and 1E; see Figure S1
the hierarchical clustering tree with an unweighted average linkage method. Show

between 24 locations represented by the OFC pseudo-ensembles beyond dec

indicate odor 14 at P5 in S2. Decisions on these odors (4 trial types) require pas

(D) Binarization of confusion matrices using different thresholds. The raw confusio

and 20%; anything above the threshold was painted white and the rest is black)

thresholds (0%), whereas detailed location coding was more prominent at higher

the similarity between hypothesized ‘‘current value’’ and ‘‘current location’’ matric

The dotted horizontal line indicates the correlation coefficient between the two ext

indicate one model rather than the other.

See also Figures S3–S5.
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for information on pre-recording training and the performance

during recording). Behavior was nearly perfect for the odors

whose reward predictions did not change across sequences;

however, the rats also performedwell on the odors whosemean-

ing required the rats to use information about the sequences of

odors (positions P4 and P5 in bottom bars in Figure 1D). In addi-

tion, for all cues, the rats were faster to initiate trials when the

sequence predicted reward for that trial than when it predicted

no reward (Figure 1F, left panel; note that this is prior to odor

onset, so can only reflect past sequence information). This indi-

cates that even when odors uniquely predicted reward, so

sequence information was not required for predicting reward,

rats were still sensitive to that information and used it to influence

their behavior. Indeed, these latencies also showed a significant

effect of future reward (Figure 1F, right panel). This general

pattern of behavior was exhibited by the group and by each indi-

vidual rat (see Figure S2 for parallel analyses of sessions from

each rat).

Ensembles in OFC Encode Both the Value and State
Defining the Current Trial
We constructed pseudo-ensembles composed of neurons re-

corded in different sessions and rats and analyzed the ability of

the pattern of activity in these populations to correctly identify

the position of the current trial within the various sequences.

To illustrate the two extreme outcomes of this analysis foreshad-

owed by our introduction, we plotted the results as they would

appear if OFC represented only expected value, defined by the

reward available on the current trial, versus the actual map of

states in the task, defined by each position in the odor se-

quences (Figure 2A). In each plot or ‘‘confusion matrix,’’ the

y axis shows the actual position of a trial in the sequence

(P1–P6, and within these, S1a-S1b-S2a-S2b), and the x axis

shows how the ensemble would classify that trial, on average,

based on the two encoding schemes. If coding in OFC repre-

sents each unique location or state in each sequence, this would

result in classification along the diagonal of thematrix (Figure 2A,

right), since each position in each sequence is unique due to the

odors on the current and/or prior trials. By contrast, if coding is

driven by current value, independent of sequence (Figure 2A,

left), then trials would frequently classify in other parts of the ma-

trix, reflecting the fact that half the positions are associated with

reward. A comparison of these idealized plots with the results of

the analyses of firing rate data from different epochs in each trial

shows relatively poor correspondence between the raw data and

either extreme alternative (Figure 2B; for single-unit examples,

see Figure S3; for decoding analyses on individual rats, see Fig-

ure S4). Even during the odor presentation period, there is
n in the dendrograms, the clustering analyses revealed a detailed relationship

oding analyses. Gray arrows indicate odor 13 at P4 in S2, and black arrows

t sequence information.

n matrix at odor time (shown in B) was filtered at different thresholds (0%, 5%,

to extract different patterns of information. The value was evident at very low

thresholds (5% and 20%). Line plot shows correlation coefficients comparing

es and the actual confusion matrices at different filtering thresholds (0%–40%).

rememodels—correlation with either of the models at that level cannot reliably
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Figure 3. Value and State Representations Are Dissociable at the Neural Ensemble Level

(A) The firing rates of all single neurons on each trial constituted a high-dimensional vector (360 vectors or data points in a 1,078-dimensional space). The firing

rates of all neurons at the odor timewere linearly projected to a principal component subspace with 80% variance explained and then to an LDA spacewith labels

about the current reward. Each LDA component combined a weighted sum of inputs from all the neurons. The LDA transformation was supervised by trial-type

labels that only separated current value (reward versus non-reward) so that the LDA could find components that best separated the two classes. Comp.,

component.

(B) The first but not the second LDA component perfectly separated the two trial types (p = 1.0 3 10�3 and 1.0, respectively; two-sided permutation test, 1,000

bootstrap samples).

(C) An ROC-based value-selectivity index (2 3 jarea under the curve [AUC] – 0.5j) ranging from 0 (low selectivity) to 1 (high selectivity) was used to test current

value selectivity for each individual LDA component. The first LDA component showed perfect value selectivity (1.0; p = 1.0 3 10�3; permutation test; 1,000

bootstrap samples). But, none of the remaining 150 LDA components were selective for the current value (< 0.05; p = 1.0 for all components; two-sided per-

mutation test; 1,000 bootstrap samples).

(D) Value discriminability was used to test whether value was distributed across components (0–1 indicates the level of value discriminability by population

components). The true discriminability was compared with that from the label-shuffled data. The first LDA component showed significantly higher value dis-

criminability than the shuffled data (1.0 versus 0.05; p = 1.0 3 10�3; one-sided permutation test; 1,000 bootstrap samples), but the remaining LDA components

did not show significantly higher value discriminability than the shuffled data (0.13 versus 0.1; p = 1.0; one-sided permutation test; 1,000 bootstrap samples). Curr.

Val. Discrim., current value discriminability. Error bars are SDs.

(E) A dendrogram using all different LDA components contained both value and state information (left). A dendrogram that only used the first LDA component only

contained value information without detailed state information (center), while a dendrogram that only used the remaining LDA components contained state

information without current value (right).

(legend continued on next page)
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substantial classification off the diagonal, indicating that raw

firing rates are not encoding current location within the sequence

with perfect fidelity; on the other hand, even in the actual reward

period, there is a strong representation along the diagonal, indi-

cating that raw firing rates are also not encoding reward or cur-

rent value independent of sequence.

To visualize the underlying structure of the neural activity

space that gives rise to the classification patterns in the confu-

sion matrices, we constructed dendrograms summarizing the

Mahalanobis distance between each pair of trial types in the

ensemble activity space. By plotting these distances in a tree-

like structure, we can see how the trial types are clustered and

which neural representations are more similar to each other,

rather than just the ‘‘best match’’ revealed by the classification

in the confusion matrices. The results, shown for the poke,

odor, and unpoke periods (Figure 2C), show that current trial

value was a major determinant of how the trial types clustered,

and therefore how the neurons coded the different trial types.

This was evident in the high degree of dissimilarity between

the rewarded trial types, in blue, and the non-rewarded trial

types, in red, in each dendrogram. However, beneath that global

structure, the sequential structure of the state space is well

represented. In each period, odors at similar positions in the

sequences (P1, P2, P3 .) tended to cluster together, indicating

that sequence position influenced the representation in the neu-

ral activity space. The exception to this organization were the

two odors with sequence-unique reward predictions, at P4 and

P5 in S2, indicated by the gray and black arrows under the den-

drograms, which seem to be represented differently from the

other odors (and therefore separate at a higher level in the hier-

archy in the dendrograms). Importantly, these value and state

features characterized the activity space during, after, and also

before odor presentation. Representation of information about

the trial before odor presentation is consistent with behavioral

evidence that the rats used sequence information to anticipate

the upcoming trial, even when this was not necessary (Figures

1E and 1F).

The different levels of information available in the neural activity

space, evident in the dendrograms, can also be revealed by

filtering or binarizing the results of the confusion matrices at

different thresholds. In this analysis, we set a threshold, say 5%

confusion, and painted as similar (white) states that were confus-

able at that threshold or above (that is, states that would be clas-

sified as identical in more than 5% of cases). A simple value

pattern dominated at very low thresholds (Figure 2D, 0%) indi-

cating that if we consider as identical any states that are some-

times confused with others, states become grouped by whether
(F) Decoding of 24 states with the first LDA component (reconstructed to 151 PC

(G) Comparison of decoding accuracy for each state (represented by each dot)

decoding; LCs, LDA components.

(H) Confusion matrix at odor time was binarized at thresholds 0%, 5%, and 20%

(I) Correlation coefficients compare the similarity between hypothesized ‘‘curre

(obtained by using the first LDA component) at different filtering thresholds.

(J) Decoding of 24 states with the remaining 150 LDA components (reconstructe

(K) Comparison of decoding accuracy for each state between all LDA componen

(L) Confusion matrix at odor time was binarized at thresholds 0%, 5%, and 20%

(M) Correlation coefficients compare the similarity between hypothesized ‘‘curre

(obtained by using the remaining LDA components) at different filtering threshold
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they are rewarded or not. Conversely, a pattern more consistent

with sequence dominated at higher thresholds (Figure 2D, 5%

and 20%), suggesting that the more fine-grained differences

between neural representations of different states were able to

separate states according to their sequence and location, even

when odors were identical, and despite the reward value of these

states being similar. A formal analysis tracking the correlation co-

efficient between the filtered patterns and the two iconic exem-

plars (Figure 2A) at different levels of filtering confirmed this

impression, showing that information about value was available

only at the lowest filtering levels, declining precipitously even at

a threshold of 2%–3%, whereas information about structure

increased quickly, overtaking value and remaining high through

a large range of filtering thresholds (10%–40%; Figures 2D).

Finally, it is worth noting that more limited combinations of var-

iables defining the task structure—such as [value + odor identity]

or even [value + odor identity + position]—do not fully reproduce

the classification patterns that we observed. Only consideration

of all the information defining the cognitive map of the task—

value, odor identity, position, and sequence, adjusted for task

relevance—produced a theoretical pattern like that observed

(Figure S5).

Representations of Current Trial Value and State in OFC
Are Dissociable
The analysis presented above shows that the OFC contains in-

formation relevant to value but that this information is embedded

within a rich representation of the task structure that is equivalent

to what has been defined as a cognitive map [5]. To test whether

the neural codes for the value and task structure were disso-

ciable, we utilized a linear discriminant analysis (LDA) to isolate

different components explaining the variance across the

pseudo-ensembles. First, the firing rates of 1,078 recorded neu-

rons on each trial, constituting a 1,078-dimensional vector (360

trials in total; 24 trial types; 15 correct trials for each trial type),

were reduced to a 151-dimensional space through principal-

component analysis (PCA; the first 151 principal components

explained 80% variance). The LDA analysis then transformed

these principal components to an equal number of orthogonal

LDA components (Figure 3A), ordered by how much of the

reward variance they explained. The resultant first LDA compo-

nent perfectly separated the trial types based on current trial

value (Figure 3B), while the other 150 components exhibited no

selectivity for current value at either the level of the individual

components (Figure 3C) or in the aggregate (Figure 3D).

This suggests that the representation of value in the population

could be orthogonal to the representation of the sequence
s before the decoding analysis).

between all LDA components and the first LDA component being used. Dec.,

.

nt value’’ and ‘‘current location’’ matrices and the actual confusion matrices

d to 151 PCs).

ts and the remaining LDA components (the first one was left out) being used.
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structure—not at the level of individual single units but rather in

the overall pattern of their firing—and therefore the two repre-

sentations are effectively multiplexed in the neural signal. Such

orthogonalized representations may be utilized downstream, al-

lowing different brain areas to easily access different aspects of

the information output by OFC. To assess this, we repeated the

analyses done on the raw data in Figure 2, isolating firing rates

derived from the first LDA component versus the remaining

value-neutral LDA components. These analyses cleanly dissoci-

ated the value and structure encoding that was confounded in

the analysis of the raw data. Thus, a dendrogram produced using

neural data transformed by the first LDA component retained the

separation based on current trial value but lost nearly all of the

underlying structure (Figure 3E, left versus center), whereas a

dendrogram produced using neural data transformed by the re-

maining components retained the sequence structure but lost all

information reflecting current trial value (Figure 3E, left versus

right). Further, the confusion matrices produced by the two

transformed datasets hewed closely to the iconic patterns at

the top of Figure 2; filtering of these patterns revealed value en-

coding in analyses of the first LDA component with no informa-

tion about structure (Figures 3F–3I) and structure encoding in

analysis of the remaining components with no information about

value (Figures 3J–3M).

Ensembles inOFCEncodeSequence Information across
Trials When Task Relevant
In addition to representing current position in the sequence, the

OFC also maintained sequence information across positions,

depending on task relevance. To show this, we trained a classi-

fier using neural activity excluding the first LDA component at

each position (P1–P6) and then used it to decode activity from tri-

als at other positions (P1–P6) [39]. The results of this cross-posi-

tional decoding are illustrated in matrices for sequence S1 (Fig-

ure 4A, center) and S2 (Figure 4B,; center). The diagonals of the

twomatrices show howwell each position can be decoded using

training data from itself (Figures 4A and 4B, upper left). These

plots confirm the results of the earlier analyses, showing that ac-

tivity in OFC is able to distinguish positions well when prompted

by either external information (P1 or P2 in both sequences) or

task relevance (P3, P4, P5 in sequence 2). However, the off-diag-

onal cross-positional decoding also shows that the representa-

tion of information about sequence extended across trials in

the sequence. That is, for some positions, the classifier built

upon the data from one position in the sequence could be

used to correctly decode data from other positions earlier or later

in the same sequence. Cross-positional decoding was particu-

larly prominent when remembering position was necessary for

correct performance in S2 at the transition point into the com-

mon arm, at P2–P4 (Figure 4B, center and right). Notably, there

was no such cross-positional decoding at the transition point

and in the common arm of S1 (Figure 4A, center and right).

This difference is particularly evident if one focuses on the two

rows in which the classifier was trained with data from P4 or

P5 and used to decode sequence at the prior positions (Figures

4A and 4B, right). This analysis revealed above-chance decoding

at earlier positions in S2, whereas not a single position was de-

coded above chance in S1. Interestingly, the classifier trained

at P4 did a poor job decoding at P5 and vice versa, but both
P4 and P5 showed good cross-positional decoding at P3. This

suggests the existence of two orthogonal persistent codes at

P3 (shared with P4 and P5, respectively), which together help

rats keep track of different outcomes or rules in the sequence.

Ensembles in OFC Miscode Sequence When the Rat
Miscodes Sequence
The analyses to this point suggest that neural activity in the OFC

is shaped by the task. Although the current trial value is a major

determinant of this activity pattern, when information about the

trial structure or sequence is important for correct performance,

this information is also maintained. If this is true, then one might

expect activity on error trials—when the rats make a mistake in

deciding whether to go or not go—to reveal miscoding in the ac-

tivity space. In our task, mistakes were almost completely

restricted to P4 and P5 in S2, which required rats to recall the

sequence of prior trials to respond correctly (Figure 1D). Errors

of commission on P4 trials are particularly useful for this analysis

since, unlike P5, there was no information available for several

prior trials regarding whether the rat was in S2a or S2b. Thus,

it is possible to ask whether the sequence was miscoded on

the error trial as well as on the preceding trial, without any inter-

ference from outside input. Further, the nosepoke latencies at P4

in S2 suggested that mistakes at P4 typically occurred because

the rat believed it was in one sequencewhen it was actually in the

other. Thus, the rat would initiate an error trial in one sequence

with a latency appropriate for the correct trial in the other

(Figure 5A).

These error trials and their behavioral similarity to correct trials

on the opposite sequence in a pair give us a unique opportunity

to ask whether encoding of information about sequence in the

OFC is mere happenstance or if it is directly related to what infor-

mation the rat is acting on versus what it is experiencing—that

is, does it reflect the hidden variable of state? To test this, we

compared how well ensembles recorded in individual sessions

performed at decoding sequence on correct versus error trials

in S2 (Figure 5). We focused on decoding on correct and error tri-

als at S2b4–, which is best positioned to address this question,

and restricted the analyses to individual sessions in which simul-

taneously recorded ensembles exhibited above-chance decod-

ing on correct trials (Figures 5B and 5C). Results showed that,

while these OFC ensembles represented a trial as belonging to

the S2b4+ when the rat responded correctly, they represented

the trial as belonging to the opposite sequence (S2a4+) when

the rat responded incorrectly. Further, the miscoding was pre-

sent both on the actual error trial (P4; S2a4+ versus S2b4+) and

also on the trial preceding the error trial (P3; S2a3+ versus

S2b3+). Similar miscoding was also observed on a substantial

number of such runs of trials involving errors at the other posi-

tions (Figures 5D and 5E).

DISCUSSION

Historically, the OFC has been implicated in signaling informa-

tion about expected outcomes relevant to ongoing adaptive

behavior [40, 41]. Current proposals contrast signaling of ex-

pected value with representing a cognitive map of the task

[2, 3]. However, these two proposals are not mutually exclusive.

Beliefs regarding the associative structure of a task are critical to
Current Biology 29, 897–907, March 18, 2019 903



S1a vs. S1b, LDA Components > #1

S2a vs. S2b, LDA Components > #1

A

B

Figure 4. Cross-Positional Decoding of Subsequences a and b

(A) Cross-positional decoding of sequence S1a versus S1b. A classifier to discriminate S1a versus S1b at odor time was trained at one position (P1–P6) and

tested at all positions (P1–P6). Decoding accuracy on the diagonal was reproduced and plotted to its upper left. A bar graph on the left summarized the data in the

diagonal and showed how well S1a versus S1b was decoded at each position (P1–P6; statistical significance was determined by the mean decoding accuracy

being outside the 95% CIs estimated by the same decoding process with label-shuffled data). On the right side, two rows (classifiers trained at P4 or P5, but

tested at P1–P6) were highlighted in the heatmap and summarized as bar graphs (P1–P6; significance was determined by 95% CIs).

(B) Cross-positional decoding of S2a versus S2b. The data are displayed in the same format as in (A). Error bars are SDs.
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Errors on P4- (2b4-)

A CPrior to Error Trials On Error TrialsB

Summary: Errors on 4 Locations : P4+, P4-, P5-, and P5+ (2a4+, 2b4-, 2a5-, and 2b5+ )

EPrior to Error Trials On Error TrialsD

Figure 5. Decoding of Sequences at Current and Prior Positions on Current Correct versus Error Trials

(A) Poke latencies on 2b4– correct and error trials were significantly different (p = 0.003; W = 1,524; paired, two-sided Wilcoxon rank-sum test; n = 65 sessions),

but those on 2a4+ correct and error trials were not (p = 0.15; W = 100; paired, two-sided Wilcoxon rank-sum test; n = 24 sessions). Two-way ANOVA analysis

revealed an interaction effect between sequence (2a4+ versus 2b4–) and performance (correct versus error; F(1, 174) = 6.37, p = 0.013). Error bars are SEMs.

(B) Classifiers were trained with only correct trials and tested with correct trials (x axis) or error trials (y axis). The decoding analyses were carried out on both

current error trials (2b4–) and on trials that prior to error trials (2b3–). Only sessions that had error trials on 2b4– and also showed above-chance decoding of 2a

versus 2b at P3 or P4 (mean chance level: 50%; significance was determined by 95% CIs) were selected for further analyses. The total number of sessions is

indicated in plots. Blue dots indicate significantly above-chance decoding of 2a versus 2b for error trials (mean chance level: 50%; significance was determined

by the right side of 95% CIs). Red dots indicate significantly below-chance decoding of 2a versus 2b for error trials (mean chance level: 50%; significance was

determined by the left side of 5% CIs). Gray indicates non-significance (within 95% CIs).

(C) Percentage of sessions that showbelow-chance (red), above-chance (blue), or non-significant (gray) decoding of 2a versus 2b prior to error trials (dependence

between behavioral and decoding performance: c2 = 10.5; p = 0.0052; chi-square test) and on error trials (c2 = 46.0; p = 1.0 3 10�10; chi-square test).

(D) Summary of decoding analyses on four error trials (2a4+, 2b4–, 2a5–, and 2b5+). Decoding of 2a versus 2b at the prior positions with correct (x axis) or error trials

(y axis) in the current trials (left panel). Decoding of 2a versus 2b at the current position with correct (x axis) or error trials (y axis) in the current trials (right panel).

(E) Percentage of sessions that show below-chance (red), above-chance (blue), or non-significant (gray) decoding of 2a versus 2b prior to error trials (c2 = 56.3;

p = 6.13 10�13; chi-square test) and on error trials (c2 = 98.4; p = 4.33 10�22; chi-square test). Incorr. Dec., incorrect decoding; Corr. Dec., correct decoding; Not

Sig., not significant.
determining the value of the current trial, while the value of the

current trial is a critical component of the underlying task struc-

ture. In awell-trained subject, the externally available information

should reflect the abstract task-relevant cognitive constructs—

underlying hidden states—formed with experience. This would

result in a cognitive map suitable to the subject’s decision-

making needs in a given task. That is, states of a task should

be compressed or represented separately in OFC based on

whether distinguishing them is important for current behavior.

In simple tasks, in which individual trials and their outcomes

are isolated, like those generally used for single-unit recording,

the final product might appear to only represent value, but, in

more complex situations in which choices are made in the

context of ongoing behavior, the representation should maintain

a complexity that matches the behavioral strategy of the subject

and the causal relationships in the task.

Here, we tested this prediction by recording single-unit activity

from the OFC in rats performing an odor sequence task that pro-

vided a complex but mappable state space spanning sequences

of trials. These sequences could be thought of as analogous to a
spatial maze, with individual trial types reflecting distinct loca-

tions in the maze. Consistent with the above hypothesis, we

found a close correspondence between how the subjects’

behavior suggested they were mapping the sequences and the

neural representations of the sequences in OFC ensembles.

Specifically, neural ensembles distinguished positions in the

sequences in the complete absence of any externally distin-

guishing information when such discrimination was necessary

for the behavior of the rat on the current or subsequent trials

(S2 common arm); similar positions were not distinguished

when there was no behavioral relevance to their distinction

(S1 common arm). This was true for the current position in the

sequence and also for decoding of other nearby positions, and

the representations were faithful to the rats’ internal classifica-

tion of which sequence they were in, such that when the rats’

behavior seemed to miscode the sequence, the ensembles in

OFC miscoded the sequence as well. Interestingly, the ensem-

bles also distinguished positions when external information

was sufficient to do so (unique arms), and even when doing so

was seemingly irrelevant to the rats’ current or future behavior
Current Biology 29, 897–907, March 18, 2019 905



(S1, unique arms). This suggests that some external information

may be too salient to fully compress and ignore, or that the rats

are using this information in ways we cannot appreciate with our

response measures. However, the general pattern of neural ac-

tivity was largely consistent with the idea that OFC represents

the cognitive map of the trial structure necessary for the behavior

or actions of the subject.

Our results also show that information about the current

position in the sequence could be formally dissociated from

information about current value, not in the raw data but in a line-

arly transformed neural activity space. This analysis reduced an

�1,000-neuron population to a much smaller number of compo-

nents, andwithin these, a single component encompassed thebit

of information relevant to the value of the current trial, while the

remaining components contained the much more detailed infor-

mation about the sequence of trials in which the value was

embedded. While value is often found to co-occur with the en-

coding of other information in OFC at the level of single units or

populations [8, 10, 11, 14–16, 18, 20], this is rarely highlighted

(but see [42] and [43]). Showing this co-occurrence clearly and

in a complex setting, and showing that the two codes are disso-

ciable has important implications. First and foremost, this result

shows how overwhelming value information is, even in the

context of an informationally complex task. Value accounted for

the largest amount of variance across our population of neurons.

In a simpler task, without the trial-spanning structure in our

design, the value might appear to be the only information of any

importance at the ensemble level. However, as value becomes

increasingly embedded within a complex associative structure,

it may become a smaller component of the activity in the OFC.

Second, the representation of task or associative structure was

dissociable from value. It is not secondary to or dependent on

value; rather, it exists in OFC evenwhen the value is formally irrel-

evant or entirely absent [4, 21, 22]. If the information is dissociable

in principle, by such a simple linear analysis, then downstream

brain regions could also dissociate these multiplexed signals.

Thus, the output from the OFC could be important not only for

providing value predictions to some downstream operator, but

also for providing a more detailed accounting of the reason why

that value was assigned—that is, passing on a picture of the ac-

tivity space invariant to the distortion of value—to other regions.

In this regard, the potential dissociation of these signals provides

a simple solution to reconcile the dichotomous views of this area.
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Long-Evans rat Charles River RRID: RGD_2308852

Software and Algorithms

MATLAB MathWorks RRID: SCR_001622

Offline Sorter Plexon RRID: SCR_000012

Neuroexplorer Nex Technologies RRID: SCR_001818

Other

Nickel-chromium wire AM Systems Cat No. 761500
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Plexon headstage cable Plexon https://plexon.com/products/headstage-cables/

https://plexon.com/products/headstages/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Geoffrey

Schoenbaum (geoffrey.schoenbaum@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male Long-Evans rats (Charles River, 175 – 200 g, �3-month-old) were housed individually on a 12-h light/dark cycle with ad libitum

access to food in an animal facility that was accredited by the Association for Assessment and Accreditation of Laboratory Animal

Care (AAALAC).Water restrictionwas used tomotivate rats to perform the task. After training or recording sessions, each rat received

10 min free access to water in their home cages. All testing was conducted at the NIDA-IRP. Animal care and experimental proced-

ures complied with US National Institutes of Health (NIH) guidelines and were approved by National Institutes on Drug Abuse Intra-

mural Research Program (NIDA-IRP) Animal Care and Use Committee (ACUC).

METHOD DETAILS

Behavioral testing
Rats were placed in aluminum chambers (�18’’ on a side), which were equipped with an odor port and a well for fluid delivery.

Behavior was controlled by custom software written in C++ that could monitor responses at the port and well via infrared beam sen-

sors and deliver odors and water by gating a custom-designed system of solenoids. Trial availability was signaled by the illumination

of paired house lights above the odor panel, after which the rat had 5 s to initiate a trial by nosepoking at the odor port. If a nosepoke

was detected then, after a 500 ms delay, odor was delivered to the port as long as their noses were in the odor port. If the rat left the

port in less than 500 ms, the trial was aborted, and the house lights were extinguished. Otherwise, at the end of the odor delivery, the

rat had a 2 s timewindow to respond at the fluidwell. On rewarded trials, responding at the fluidwell led to the delivery of 50 mL of 10%

sucrose solution after a delay of 400 – 1500 ms. After the rat consumed the reward and left the well, the house lights were extin-

guished to end the trial, beginning the ITI. If the rat failed to respond in the 2 s window, the house lights were extinguished at the

end of the 2 s period. If the rat responded in the 2 s window on a non-rewarded trial, an exceptionally rare event in recording, the

house lights were extinguished, ending the trial, and no reward was delivered. The ITI was 4 s following correct go or no-go trials,

and 8 s following trials on which the rat made an error.

One of 16 odors was presented on each trial, and the trials were organized into two pairs of sequences (S1a, S1b, S2a, and S2b).

Odors used in each sequence and their associated valence is listed as below.

S1a: 0+ 1- 4- 5+ 6- 7+

S1a: 2+ 3- 4- 5+ 6- 7+

S2a: 8+ 9- 12- 13+ 14- 15+

S2b: 10+ 11- 12- 13- 14+ 15+

Before training on the full sequence task, rats were first shaped to nosepoke at the odor port and then respond at the well

for reward. After this, they were trained to discriminate a single odor pair (one rewarded and one non-rewarded odor) from sequence
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1a or 1b. Sessions consisted of a maximum of 480 trials. After rats reached a high criterion in performance (> 90% correct ratio),

additional odor pairs were added until the rats were able to perform well in a session containing sequences 1a and 1b. After learning

sequences 1a and1b, rats were trained to discriminate between odors 13/14 from sequence 2, including several reversals of the

valence of the pair. After the third reversal, additional odor pairs were added from sequence 2 if the rats were able to maintain

accurate performance (> 75% correct) on each trial type. Once sequence 2 had been fully introduced in this manner, the rats began

sessions containing both pairs of sequences (1a, 1b, 2a, and 2b).

In this final phase, each sequence (or each of the 24 trial types) was repeated for 20 times to make up 480 trials in total. Sequences

1a and 1b were always followed by 2a or 2b with roughly equal probability (0.55 and 0.45, respectively). Sequence 2a and 2b were

always followed by 1a or 1b also with slightly more dissymmetry in probability (0.67 and 0.37, respectively). The overall sequencewas

repeated from start to finish in each session.

1b 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a 1a 2b 1b 2a 1b 2a 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a 1a 2b 1a 2a 1b

2a 1b 2a 1a 2b 1a 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2b 1b 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a

Before electrode implantation, animals were kept training on the full sequence for at least three weeks until they were able to

perform well (> 75% correct) on every trial type.

Surgical procedures
Rats were implanted with a drivable bundle of 16 nickel-chromium wires (25 mm in diameter; AM Systems, WA) that targeted the left

lateral OFC (AP: 3 mm. ML: 3.2 mm). Wire bundles were housed in a thin cannula and cut with surgical scissors to extend 1.5 – 2 mm

beyond the cannula. The tips of wires were initially placed at 4 mm ventral from brain surface and then driven down 40 mm or 80 mm

after each recording session to search for new units. After surgery, rats were given Cephalexin (15 mg/kg po qd) for two weeks to

prevent any infection. At the end of testing, rats were euthanized by an overdose of isoflurane. The final positions of electrodes

weremarked by passing a small constant current through thewires, and the brains were processed for histological examination using

standard techniques.

Single-unit recording
Spiking activity was recorded using the PlexonMultichannel Acquisition Processor (MAP) system (Plexon, Dallas, TX). Analog signals

from electrodes were amplified (headstage: 20 3 , differential preamplifier: 50 3 , acquisition processor: 1 – 32 3 ) and filtered

(250 – 8, 000 Hz) following standard procedures. A pre-set threshold was used for each active channel to capture unsorted spikes.

Timestamps for behavioral events from the behavioral program were sent to the Plexon system, synchronized and recorded along-

side the neural activity. Spikes were sorted to identify single units offline using Offline Sorter (Plexon, Dallas, TX) with a template

matching algorithm. Sorted files were opened in NeuroExplorer (Nex Technologies, Colorado Springs, CO) to extract unit and behav-

ioral event timestamps, which were then exported as MATLAB (MathWorks, Natick, MA) formatted files for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample sizes (number of rats and number of neurons) were not predetermined by any statistical methods but are comparable to

those reported in previous publications from our lab. All data were analyzed using MATLAB (MathWorks, Natick, MA).

Task events and peri-event spike train analysis
Task events for each trial were synchronized and recorded alongside the neural signals. For neural analyses, each trial was

segmented into 6 epochs associated with different trial events: ‘‘light,’’ ‘‘poke,’’ ‘‘odor,’’ ‘‘unpoke,’’ ‘‘choice,’’ and ‘‘outcome.’’ On

trials where the rat did not respond, and/or the water reward was not delivered, we used the end of the 2 s window for responding

as the ‘‘choice’’ event and a time point 1.5 s after the ‘‘choice’’ as the ‘‘outcome.’’ Behavioral performance was quantified as the

percent of trials on which the rats responded correctly, their reaction time from the odor port to the fluid well, and the latency

with which they initiated a trial after light onset. The data analysis only included sessions in which the percent correct was above

75% for each individual trial type. Error trials were removed in the main figures except Figure 5 in which error trials were used as

test sets for classification. The spike train for each isolated single unit was aligned to the onset of each task event. Pre-event time

was set to be 200 ms, and post-event time was set to be 600 ms. Spike number was counted with a bin = 100 ms. A Gaussian kernel

(s = 50 ms) was used to smooth the spike train on each trial.

Classification analyses
We trained a linear discriminant analysis (LDA) algorithm (MATLAB function: fitcdiscr) to classify 24 trial types or locations for each

one of six task events. Neurons that were recorded from different sessions were aligned together as pseudo-ensembles. Firing rates

on each trial 100 – 600 ms after task events (500 ms) for each individual neuron were used for classification. Each trial was an obser-

vation that contained firing rates from 1, 078 neurons (480 trials in total with error trials; 360 trials in total without error trials; only cor-

rect trials were used to build classifiers). The classification accuracy was assessed by leave-one-out cross-validation. Specifically,

one trial from each trial type was left out for future testing, and all other trials were used for the training. Principal component analysis
Current Biology 29, 897–907.e1–e3, March 18, 2019 e2



(PCA) was used for feature extraction and dimension reduction in the training set. The classifier was trained on the first a few principal

components (PCs) that explained 80% variance. The same PCA transformation from the training set was applied to the test set. Trial

order for each neuron was shuffled to remove the temporal structure and correlation between neurons within the same trial type. The

trial-order shuffling was repeated for 100 times. For each time of trial-order shuffling, the leave-one-out cross-validation was

repeated for 500 times. The mean decoding accuracy for each trial type as shown in the confusion matrix was the mean from all

runs. The statistical significance of the mean decoding accuracy was determined by 95% confidence interval estimated by running

the same decoding process with label-shuffled data. Because of trial order shuffling, the number of PCs being used in classifiers

varied for each run. The mean number of PCs being used for each run was 151.2 ± 0.4 (mean ± SD). It was for simplicity when

we said 151 PCs were used. To better visualize and potentially extract different aspects of information from the confusion matrices,

we binarized the confusion matrices with different thresholds (0% – 40%). For each threshold (e.g., 5%), any value in a confusion

matrix that was below or equal to this threshold was set to be 0%, and other places were set to be 100%.

For the classification of all trial types with different LDA components (the first LDA component or the remaining LDA components),

we first did PCA on all the trials and neurons (without splitting the data into training sets and test sets) with 80% variance retained

(151 PCs). The LDA was run on these PCs, supervised by the value of the current trial (reward versus non-reward). Thus, each

LDA component was a linear combination of original firing rates from all the neurons. Importantly, only the first LDA component

showed the ability to discriminate the current value. We reconstructed two sets of PCs from the first LDA component and the other

LDA components, respectively.We then used the two sets of PCs to decode the current value (reward versus non-reward) and 24 trial

types (locations or states) with a leave-one-out cross-validation procedure as described above (without further PCA for dimension

reduction).

We removed the first LDA components and used others (150 components) for the cross-positional decoding. PCA was used for

dimension reduction (with 80% variance retained). We trained binary classifiers at one position (P1 – P5; S1a versus S1b or S2a

versus S2b) as described above and tested them on other positions (P1 – P5). The trial orders for both the training and test sets

were shuffled. Leave-one-out cross-validation was used for the estimation of the mean decoding accuracy (500 repeats). For

each repeat, trials that were left-out for the test set would not be in the training set. Statistical significance was determined by

95% confidence interval estimated from label-shuffled decoding processes.

For the decoding of sequences on error trials in each session, we built classifiers with 15 correct trials and used the error trials

as the test set. The trial order was shuffled within each trial type for each repeat. Cross-validation followed the above procedure.

The 95% confidence interval was estimated by decoding of sequences on correct trials with shuffled labels in the training set.

The mean decoding accuracy was the mean across 500 runs. Chi-square test was used to test whether there was dependence be-

tween behavioral (correct or error trials) and decoding performance (significantly above-chance, below-chance, or not significant).

Hierarchical clustering analyses
The hierarchical agglomerative clustering was performed on data that was projected onto the LDA space. Each trial was organized as

a vector with firing rates of 1, 078 neurons as 1, 078 dimensions. The original data was transformed to PCA space with 80% variance

retained (151 PCs), then transformed to LDA space guided by 24 trial-type labels. A dissimilarity matrix was computed by measuring

the Mahalanobis distances between each pair of location means. Based on the dissimilarity matrix, an agglomerative hierarchical

cluster tree was generated with the unweighted average distance method.

Discriminability analyses
Weused a ROC-basedmetric tomeasure howwell neural activity components, that were transformed from firing rates of single units,

can discriminate two different value conditions (i.e., to test whether discrimination of the value was distributed across components).

The population activity was organized as a matrix of component activity with each row represented one trial (observation) and each

column represented a component (dimension). Each trial was labeled with ‘‘reward’’ or ‘‘non-reward.’’ The first three PCs were

used for the LDA transformation. We projected all the data points (trials) with value labels onto the first LDA dimension, which

was supposed to be the best component to separate value. An ROC curve was constructed to compare the distributions of the neural

responses to the two value conditions on the chosen LDA dimension. We used the area under the ROC curve (AUC) to compute the

final discriminability metric: 23 jAUC-0.5j. In addition, we used the same procedure to calculate discriminability of the ensembles on

value with shuffled labels, which gave us an estimated baseline discriminability. A one-sided permutation test with 1000 bootstrap

samples was used to test statistical significance in the mean difference between the actual and baseline discriminability (*p < 0.05).

DATA AND SOFTWARE AVAILABILITY

The dataset and MATLAB scripts used in this study will be made available upon request by the lead contact, Geoffrey Schoenbaum

(geoffrey.schoenbaum@nih.gov).
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