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SUMMARY

Both hippocampus (HPC) and orbitofrontal cortex
(OFC) have been shown to be critical for behavioral
tasks that require use of an internal model or cogni-
tive map, composed of the states and the relation-
ships between them, which define the current envi-
ronment or task at hand. One general idea is that
the HPC provides the cognitive map, which is then
transformed by OFC to emphasize information of
relevance to current goals. Our previous analysis of
ensemble activity in OFC in rats performing an odor
sequence task revealed a rich representation of
behaviorally relevant task structure, consistent with
this proposal. Here, we compared those data to re-
cordings from single units in area CA1 of the HPC
of rats performing the same task. Contrary to expec-
tations that HPC ensembles would represent
detailed, even incidental, information defining the
full task space, we found that HPC ensembles—like
those in OFC—failed to distinguish states when it
was not behaviorally necessary. However, hippo-
campal ensembles were better than those in OFC
at distinguishing task states in which prospective
memory was necessary for future performance.
These results suggest that, in familiar environments,
the HPC and OFC may play complementary roles,
with the OFC maintaining the subjects’ current posi-
tion on the cognitive map or state space, supported
by HPC when memory demands are high.

INTRODUCTION

Both the hippocampus (HPC) and the orbitofrontal cortex (OFC)

have been proposed to encode a cognitive map of task space, a

mental model of events, and their relationships in behavioral

tasks [1–9]. But their unique roles and possible interplay in this

function is largely a matter of speculation since few truly parallel
3402 Current Biology 29, 3402–3409, October 21, 2019 Published by
studies have been conducted to compare encoding in these two

regions on appropriate tasks [10, 11]. Since the HPC has been

shown to represent information, such as space, time, and even

incidental associations [12–19], while the activity of the OFC is

largely recruited to encode expected outcomes [20–22], a pop-

ular idea has arisen that the HPC contributes concrete and

detailed environmental information, which is received and

tailored by the OFC to signal information that is more relevant

to the subject’s current subjective needs [4, 23–25]. On the other

hand, there is ample evidence that neural activity in HPC is also

strongly shaped by the environment and the subject’s current

goals [26–29]. This suggests an alternative model in which the

two regions cooperate in organizing information to drive

behavior.

Our previously developed odor sequence task, with 24

different task states defined by both external sensory stimuli

and internal memory of the sequences, provides an appropriate

tool with which to examine this question. It includes explicitly and

implicitly cued states, some of which are reward relevant and

some of which are not, all embedded in a non-spatial map

defined by clear relationships [8]. A full representation of the

task structure would reflect the knowledge of both reward-rele-

vant as well as reward-irrelevant information, while a tailored

task-oriented representation would highlight information related

to the behavioral goals. Indeed, our previous study found a

reduced representation of the task structure in OFC that largely

corresponded to the information the rats needed to correctly

perform the task. Here, we set out to test whether the HPCmight

encode a more complete task space, less biased by current

goals and therefore including more information about behavior-

ally irrelevant relationships.

RESULTS

We recorded from the HPC in 9 rats trained to perform the odor

sequence task previously used to record in the OFC (Figures 1A

and 1B) [8]. Briefly, the task consisted of a sequence of ‘‘go/no-

go’’ odor discrimination steps. In each step in the sequence (i.e.,

trial), one of 16 different odor cues was presented, and the rat

had to decide whether to ‘‘go’’ to a nearby fluid well within 2 s

to obtain a sucrose reward or withhold responding to avoid a
Elsevier Ltd.
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Figure 1. Odor Sequence Task Design and Behavioral Performance

(A) Depiction of a single trial in the odor sequence task. Upon the onset of two houselights on the front wall, rats initiated a trial by nose poking into an odor port and

sampled one of 16 odors. Within a 2 s time window, rats decided to enter the water well or not depending on the odor identities on current and sometimes also

past trials.

(B) The 16 different odors were presented in four sequences. Arrows indicate the transitions between sequences.

(C) Recoding sites of CA1. Red lines indicate cannula and electrode tracks from 9 rats. The blue shaded area shows one example of electrolytic lesion made

during the perfusion.

(D) Percent correct on each trial type for the two S1 sequences (above the middle) and two S2 sequences (below the middle). Blue, rewarded (‘‘go’’) states; red,

non-rewarded (‘‘no-go’’) states. Error bars within this figure are SEMs.

(E) Reaction time measured the period from the odor port exit to the water well entry. Correct no-go responses were encoded as a reaction time of 2 s (the

response time window).

(F) Poke latencywas the time from the onset of houselights to the entry of the odor port. The poke latencies were significantly different between S2a andS2b at P2,

P3, P4, and P5 (p = 5.93 10�8, 1.53 10�10, 5.23 10�30, and 7.13 10�29; W = 91,048, 88,717, 76,979, and 130,169, respectively; two-sidedWilcoxon rank-sum

test; n = 322 sessions) and also between S1a and S1b at P1 and P2 (p = 83 10�3 and 83 10�4; W = 97,624 and 111,755, respectively; two-sidedWilcoxon rank-

sum test; n = 322 sessions). This latencywas highlymodulated by both current and future rewards, as seen in the right plot, which averages over states that have a

similar three-trial future reward and is sorted by discounted future reward (from lowest to highest). Poke latency was shorter when more reward was forthcoming

(p = 0; W = 9,050,017 for the comparison between negative and positive states; p = 1.53 10�13, 1.43 10�33, 33 10�63, 13 10�6, 1.93 10�98, 9.23 10�7, and

53 10�3; W = 314,497, 1,636,876, 1,345,843, 1,567,283.5, 1,774,243, 1,164,216, and 1,016,706 for consecutive pairs of bars from left to right, respectively; two-

sided Wilcoxon rank-sum test). A three-way ANOVA analysis revealed that reward on current, next, and next + 1 trials significantly affected poke latency

(‘‘current’’: F(1, 7,721) = 7,697.73, p = 0; ‘‘next’’: F(1, 7,721) = 921.61, p = 0; ‘‘next + 1’’: F(1, 7,721) = 146.28, p = 0). Therewere also significant interactions between

them (‘‘current 3 next’’: F(1, 7,721) = 675.92, p = 0; ‘‘current 3 next + 1’’: F(1, 7,721) = 256.64, p = 0; ‘‘next 3 next + 1’’: F(1, 7,721) = 10.58, p = 1 3 10�3). +

indicates a rewarded trial and � a non-rewarded trial; **p < 0.01; ***p < 0.001.

See also Figures S1, S2, and S3.
prolonged inter-trial interval (ITI). The 16 odor cues were pre-

sented in predictable sequences. There were two major se-

quences (S1 and S2), each of which nested two subsequences

(a and b). Each sequence consisted of six different odors or

positions (P1–P6). Odors at the first two positions (P1 and P2)

were unique for each subsequence (8 odors; two for each of

the 4 subsequences), while odors at each of the last four posi-

tions (P3–P6) were common across the two major sequences

(8 remaining odors). Thus, S1a and S1b shared one set of odors

at these positions, and S2a and S2b shared another set. All but

two of the odors had a fixed association with reward or non-

reward, so for most of the trial types or positions, correct
behavior did not require information about the sequence. How-

ever, for the odors at P4 and P5 in S2, the significance of the

odor differed for the two subsequences S2a and S2b. This

required the rats to maintain information across several trials to

perform correctly.

A bundle of 16 stereotrodes (32 channels) was implanted in

the dorsal HPC after the rats were extensively trained. After re-

covery from surgery, single-unit activity was recorded from

CA1 as rats performed the task (Figure 1C; n = 2,056 neurons).

Rats were highly proficient on the task during recording, per-

forming accurately on the discrimination at all positions,

including P4 and P5 in S2, where performance required memory
Current Biology 29, 3402–3409, October 21, 2019 3403
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Figure 2. Comparisons of Decoding Accuracy of 24 Task States between the HPC and OFC

(A) Confusion matrices obtained from the decoding of 24 states from HPC ensemble activity at six different task positions. The y axis for each panel indicates the

rats’ actual state, and the x axis shows the state decoded from the neural ensemble activities. The brighter color indicates a higher probability of decoding the

state. These plots show what states are confused with what states; for example, at the time of the light (left matrix), each of the four states in P2 (one in each

sequence) is confused with all other states in P2, but not with states in other positions. In contrast, at the time of the poke, these states are well distinguished.

(B) Scatterplots show the accuracy in decoding each of the 24 states by HPC and OFC ensembles. The colored numbers (1–6) indicate positions (P1–P6). Light

blue and light red, rewarded and non-rewarded positions in S1, respectively; dark blue and dark red, rewarded and non-rewarded positions in S2, respectively.

See also Figure S4.
for the events of prior trials (Figures 1D and 1E). The influence

of the current position in the sequence was apparent in rats’ la-

tency to initiate trials following light onset. This latency was also

tightly modulated by future rewards, reflecting knowledge of

the sequence structure (Figure 1F). These behavioral results

were all similar to those obtained under the same task design

and conditions during recording from OFC [8]. At the single-

unit level, both areas showed substantial neuronal selectivity to

24 task states as well as reward values of not only the current

but also the past and future trials and sequence pairs at each

position (Figures S1, S2, and S3). Therefore, we combined the

newly recorded HPC data and existing OFC data (n = 1,078

neurons) to directly compare task structure representations

between the two areas.
3404 Current Biology 29, 3402–3409, October 21, 2019
The Precision of Hippocampal Encoding of Task States
Was Dampened by Proximal Reward and Task
Irrelevance
To compare task structure representations, we constructed

pseudo-ensembles of CA1 single units and tested for represen-

tation of the 24 positions in the 4 sequences, using data from

epochs corresponding to each of the 6 different events in a trial

(‘‘light,’’ ‘‘poke,’’ ‘‘odor,’’ ‘‘unpoke,’’ ‘‘choice,’’ and ‘‘outcome’’).

Like ensembles constructive of OFC neurons, HPC ensembles

contained significant information about sequence positions

shown in confusion matrices (Figure 2A), particularly during the

periods surrounding odor sampling that were key to correct re-

sponding. In both areas, the patterns evident in the confusion

matrices developed gradually as ensemble size increased and



A B Figure 3. Comparisons of Decoding Accu-

racy of Sequence Pairs at Odor-Overlap-

ping Positions between the HPC and OFC

(A and B) Binary decoding of subsequences S1a

vs. S1b and S2a vs. S2b during ‘‘poke’’ (upper

panel) and ‘‘odor’’ (lower panel) time by HPC (A)

and OFC (B). Asterisks indicate the mean decod-

ing accuracy exceeds the 95%confidence interval

constructed with label-shuffled data. Error bars

indicate standard deviations (SDs).
did not depend on recordings from any particular subject (Fig-

ure S4), suggesting that the observed effects reflect information

distributed across relatively large portions of the population. This

is consistent with the single-unit analysis presented above and

also with the varied patterns evident in individual single units

(Figures S1 and S2; see also Figure S3 in [8] for OFC single units).

However, contrary to the hypothesis that HPC would repre-

sent sequence information with higher fidelity than OFC—and

with less bias for behavioral relevance, internal goals, or

reward—HPC ensemble activity at different positions (P1–P6)
A B

Figure 4. Hierarchical Clustering of 24 Task States by the HPC and OF

(A and B) Hierarchical clustering of 24 states based on population neural activities

HPC (A) and OFC (B). The Mahalanobis distance was used to create a dissimilari

states in the population activity space. The dissimilarity matrix was used to constru

clustering results were shown in dendrograms. In the HPC, the average pairwise d

between the different rewarded states (middle), indicating better encoding of n

W = 2,381; ‘‘odor time’’: mean difference = 112.7, p = 2.43 10�17, W = 2,527; two

the OFC (right) but wasmuch less prominent (poke time: mean difference = 44.6, p

two-sided Wilcoxon rank-sum test; n = 66 pairs). *p < 0.05; ***p < 0.001. Error b
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Current Biolo
performed generally no better and often

worse than OFC ensembles at correctly

identifying the rat’s specific state (i.e.,

one of 24; Figure 2B). Indeed, rather

than being less sensitive to behavioral

relevance, HPC ensembles seemed, if

anything, more sensitive to this factor

in what they represented (Figures 3

and 4).
The influence of behavioral relevance on the encoding of

sitions by HPC ensembles was particularly evident in two

pects of the results. One was in how the HPC ensembles rep-

sented P3–P6 in S1, where the rats did not need to distinguish

bsequences (Figure 3). OFC performed at chance at distin-

ishing these positions (Figure 3B), providing an effective floor

ainst which to see a better representation of incidental sen-

ry associations in HPC. However, HPC ensembles also per-

rmed at chance at decoding these states; like OFC, they

re much better at distinguishing these positions in S2, where
ting nose poke (top) and odor sampling (bottom) in

dissimilarity or distance between each pair of task

ree by an unweighted average linkagemethod. The

t non-rewarded states was larger than the distance

time’’: mean difference = 156.4, p = 6 3 10�20,

est; n = 66 pairs). The same effect also appeared in

r time: mean difference = 34.8, p = 0.03, W = 3,908;

gy 29, 3402–3409, October 21, 2019 3405
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Figure 5. Decoding of States at P2 and P3

from HPC Ensemble Activity at Poke Time

Was Better than from OFC

(A) Positions (P1–P6) in S1 were colored with light

blue (rewarded) and light red (non-rewarded).

Positions (P1–P6) in S2 were colored with dark

blue (rewarded) and dark red (non-rewarded).

Dotted square highlights two task states 2a3 and

2b3. Solid square highlights 8 task states at P2

and P3.

(B) Binary decoding of sequences 2a versus 2b at

P3 across time by HPC (orange) and OFC (green)

ensembles. Bold lines indicate the mean decoding

accuracy was above the 95% confidence interval

estimated from the decoding with label-shuffled

data. Time bin = 100 ms.

(C) Comparison of decoding accuracies of 24 task

states by HPC and OFC identified 8 states (high-

lighted by a gray square; p < 0.001; two-sided

Wilcoxon rank-sum test) where HPC showed

better decoding than OFC. In addition, OFC

showed significantly better decoding than HPC for

the rest task states (p < 0.001; two-sidedWilcoxon

rank-sum test) except S2b1 (p = 0.35; two-sided

Wilcoxon rank-sum test). Task states were color

coded the same way as in (A).
doing so was relevant to the rats’ behavior (Figure 3A). The sec-

ond area where the impact of behavioral relevance was evident

was in the strong effect of current reward on encoding by the

HPC ensembles (Figure 4). HPC ensembles showedmuch better

state discrimination between non-rewarded positions than be-

tween rewarded positions during both poke and odor time (Fig-

ure 4A). OFC ensembles also showed similar trends but with

smaller effect sizes (Figure 4B).

HPC Activity Distinguishes Different Sequences at P2
and P3 Better Than OFC
To further investigate the differences between HPC and OFC,

we next looked at the representation of P3 in sequence 2a

versus 2b, where the rats were required to maintain the mem-

ory of past odors without discriminative sensory cues in order

to know what to do in the following position (P4). Distinguish-

ing P3 in sequence 2a versus 2b was significantly better for

HPC ensembles as compared to OFC ensembles during the

poke time (Figures 5A and 5B). Ensemble performance at

poke time was particularly intriguing because, during this

period, there was no confound from bottom-up sensory-driven

neural responses as may occur during the odor period. Thus,

any information encoded during the poke time must be sup-

ported purely by the sequence information at all positions.

We therefore asked whether encoding by HPC ensembles

was better than by OFC ensembles at all 24 positions at

poke time. This analysis identified 8 positions or states that

were significantly better represented by ensembles from

HPC than from OFC (Figure 5C). These 8 states all occurred

at P2 and P3—critical positions in each sequence where the

rats transitioned from the odor-unique positions, where

external information was provided regarding sequence, to

the odor-common arms, where tracking sequence required

memory for prior events.
3406 Current Biology 29, 3402–3409, October 21, 2019
Complementary Emphases on State Representations by
HPC and OFC
To further test whether this transition from the unique to the

common arms captured a complementary pattern of encoding

in HPC and OFC, we sorted the 24 states based on how well

each was represented by the two areas (Figures 6A and 6B) at

the poke time. Task states best represented by each area were

largely non-overlapping, with HPC better representing states

around the transition and OFC better representing states in the

common arms after the transition.

We next asked whether this pattern was also evident in the

ability of the ensembles to distinguish positions (P2–P5) across

each sequence pair (S1a versus S1b and S2a versus S2b; Fig-

ure 6C). We defined P2 and P3 as the ‘‘transition’’ phase and

positions P4 and P5 as the ‘‘after-transition’’ phase of the

sequence. Consistent with data shown in Figure 3, both HPC

and OFC did poorly at distinguishing positions in S1a versus

S1b once the odors and outcomes were the same (P3–P5),

confirming that neither region maintained information that was

not required for the behavioral performance (Figure 6C, left

panel). By contrast, in each of the other comparisons, the HPC

ensembles performed significantly better at discriminating posi-

tions at the transition than did ensembles composed of OFC

neurons. After the transition, this pattern was largely reversed,

with OFC ensembles providing better decoding than HPC en-

sembles at P4 and P5 as long as the value was the same (Fig-

ure 6D; S2a versus either S1a or S1b). When the value of these

positions differed in the comparison (Figure 6C, right panel;

S2a versus S2b), both regions performedwell after the transition.

However, for HPC, this performance is deceptive, since it is

based not on true representation of the two states at each posi-

tion but rather on the relatively uniform representation of all the

rewarded positions in both sequences (see dendrograms; Fig-

ure 4). In the comparisons, when the reward availability was
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Figure 6. States Best Encoded in HPCWere

Predominantly at P2 and P3, and Those Bet-

ter Encoded in OFC Were Later in the

Sequence

(A) Twenty-four task states sorted based on the Z

scores of their decoding accuracies at the poke

time from HPC activity (top panel) or OFC activity

(bottom panel).

(B) The sorting in (A) identified the first 9 states

where HPC (orange background) or OFC (green

background) showed the best decoding accuracy.

(C) Binary decoding of 1a versus 1b (left) and 2a

versus2b (right) at fourpositions (poke time;P2–P5;

200 repeats of decoding processes). Orange and

green asterisks (meaning HPC and OFC, respec-

tively) indicate the mean decoding accuracy is

above the 95% confidence interval from the de-

coding with label-shuffled data. Error bars are SDs.

(D) Binary decoding of 1a versus 2a (left) and 1b

versus 2a (right) at four positions (poke time; P2–

P5; 200 repeats of decoding). The colors have the

same meanings as in (C). Error bars are SDs. In

addition, for 1a versus 2a, a two-way ANOVA

analysis (‘‘area’’ as factor 1: HPC or OFC; ‘‘phase’’

as factor 2: ‘‘transition’’ or ‘‘after transition’’) re-

vealed main effects by both brain areas (F(1,

1,596) = 24.9; p = 6.8 3 10�7) and task phases

(F(1, 1,596) = 45.5; p = 2.23 10�11). An interaction

was also observed (F(1, 1,596) = 1,575.9; p =

2.6 3 10�240). For the HPC, the decoding accu-

racy of subsequences significantly decreased

from the ‘‘transition’’ phase to ‘‘after transition’’

phase (p = 3.8 3 10�9; post hoc Tukey’s HSD

(honestly significant difference) test); while for the

OFC, it significantly increased (p = 3.8 3 10�9;

post hoc Tukey’s HSD test). Similar results were

also seen for 1b versus 2a by a two-way ANOVA

analysis. Specifically, both brain areas (F(1,

1,596) = 913.5; p = 4.7 3 10�159) and task phases

(F(1, 1,596) = 1,166.5; p = 2.2 3 10�192) showed

main effects. An interaction (F(1, 1,596) = 4,678.8;

p = 0) exists between the two factors. The de-

coding of subsequences in the HPC decreased

from the transition phase to after transition phase

(p = 3.83 10�9; post hoc Tukey’s HSD test), while

that in the OFC increased (p = 3.8 3 10�9; post

hoc Tukey’s HSD test).
the same, HPC showed the best decoding during the transition

but decreased its ability in distinguishing sequences after the

transition, while OFC showed the opposite pattern (Figure 6D).

DISCUSSION

The current study sought to test the hypothesis that the

HPC represents detailed, sometimes incidental, information

about the cognitive map of a task, while such information

is tailored in the OFC to highlight distinctions more directly rele-

vant to behavioral goals [4, 5, 24, 30]. In the odor sequence task

used here, this hypothesis predicts that the identity of the 24 task

states should be better encoded in activity recorded in the HPC
as compared to the OFC. In particular, we expected that HPC

ensembles would perform as well as those from OFC at

distinguishing behaviorally relevant states and much better at

distinguishing states—such as those in the common arm of

S1—whose discrimination was unimportant for performing the

task correctly. However, our data showed that the task repre-

sentations in both OFC and HPC were closely tied to behavioral

demands; neither maintained sequence information that was not

required for behavior (Figure 3), and the HPC ensembles actually

performed more poorly than those in OFC at distinguishing

different rewarded states (Figure 4).

In evaluating the significance of these findings, it is important

to note that the task environment was familiar to the rats in both
Current Biology 29, 3402–3409, October 21, 2019 3407



studies. This is by necessity to some extent, since it would be

difficult to analyze neural representations during poor and highly

variable performance earlier in learning, when such representa-

tions also may be changing as the task becomes familiar. This

leaves open the possibility that, earlier in learning, the HPC-

OFC system might operate differently. However, the current

results suggest that, once an environment is familiar, neither re-

gion maintains much information about the structure of the task

that is incidental to task performance.

What then distinguishes the cognitive maps in OFC and

HPC in familiar environments? One striking difference between

the HPC and OFC was that the HPC encoding was highly biased

toward the non-rewarded task states [31]. This did not seem to

simply reflect non-reward, however, since the non-rewarded

positions at P5 (1a5�, 1b5�, and 2a5�) were poorly represented

by the HPC (Figure 6D). Instead, this finding seems to be better

explained by the proximity of these states to entry into the

common arms of the sequences. This transition point is where

information must be encoded in episodic memory, so that later

states in the common arm can be properly distinguished. The

bias in HPC to strongly represent these positions, and the rela-

tively poor encoding of rewarded positions, is reminiscent of

evidence that the HPC represents the start of journeys through

a mapped environment [32–34] and is also similar to distinctions

between HPC and prefrontal representations seen in prior work

on context [35–40]. For example, theta oscillations in the HPC

have been shown to precede those in the medial prefrontal cor-

tex (mPFC) when subjects first enter a unique context, while

mPFC theta activity precedes that in the HPC later in the trial

when decisions are made within this context [41]. In our task,

the unique arms may be thought of as setting the context for

determining the rules or map to apply in the common arms.

For the most part, discriminating between sequences on the

common arms had to be based on latent or hidden information,

available only inmemory. In this regard, it is interesting that, once

in the common arms, the HPC generalized across states with

similar external information, whereas OFC became better at

discriminating these hidden task states. This suggests that one

distinction between the cognitive maps represented in the two

areasmay be the degree to which inference or encoding of latent

information underlies what is represented. While this may be in-

terpreted as a bias in OFC for task-relevant information, the

seeming task relevance of OFC representations may simply

reflect the importance of latent states in determining goals and

behavior in such tasks. By providing a task in which sections

were identical except for the necessity for inferring latent causes,

our results highlight this difference.

Whether the superior performance of the OFC at representing

the hidden or latent information represents a true difference be-

tween this area and HPC is less clear from our data, and we

would view that as unlikely. Both areas have been clearly and

repeatedly implicated in both representing and using such infor-

mation [26–29, 42–44], so the important question to us seems to

be not which one does it better or more strongly but rather

how they cooperate in this general representational function

and under what circumstances one or the other is dominant. In

this regard, the current results provide a rare chance to directly

compare when and how strongly hidden information is repre-

sented in the two areas under the same specific conditions.
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Additional work will be required to suss out what about the cur-

rent task drives the observed dichotomy, but at least two possi-

bilities spring to mind. One, discussed earlier, is that it may

reflect the relatively large amount of training given to these

rats. The HPC may play a different role in supporting the repre-

sentation of latent information earlier in learning, which then is

minimized or unnecessary in advanced stages of training. A

second possibility is that the representation of latent information

in the HPC was rendered less prominent by the position of this

information near the end of the sequences. Perhaps if there

was a need to represent this information at the start of the se-

quences, then it would be better represented in HPC.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Long-Evans rat Charles River RRID: RGD_2308852

Software and Algorithms

MATLAB MathWorks RRID: SCR_001622

Offline Sorter Plexon RRID: SCR_000012

Neuroexplorer Nex Technologies RRID: SCR_001818

Other

Nickel-chromium wire AM Systems Cat No. 761000

Plexon standard commutator Plexon http://plexon.com/products/plexonstandard-commutator

Plexon headstage cable Plexon http://plexon.com/products/headstage-cables

Plexon headstage Plexon http://plexon.com/products/headstages
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate any unique reagents, however further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, Geoffrey Schoenbaum (geoffrey.schoenbaum@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male Long-Evans rats (Charles River, 175 – 200 g, �3-month-old) were individually housed on a 12-h light/dark cycle with ad libitum

access to food in an animal facility, which was accredited by the Association for Assessment and Accreditation of Laboratory Animal

Care (AAALAC). Rats were deprived of water before they performed the task then had free access to water for 10 min in their home

cages after each session. All behavioral testing was conducted at the NIDA-IRP. Animal care and experimental procedures complied

with US National Institutes of Health (NIH) guidelines and were approved by National Institutes on Drug Abuse Intramural Research

Program (NIDA-IRP) Animal Care and Use Committee (ACUC).

METHOD DETAILS

Behavioral Task
Rats were trained in aluminumboxes (�18’’ on a side) with an odor port and a fluidwell for odor and sucrose solution delivery, respec-

tively. Odor and fluid delivery were enabled by solenoids that were controlled by a custom-written C++ program. Odor port and fluid

well entries were monitored through infrared beam sensors. The availability of each trial was signaled by the illumination of two

house-lights in the front wall above the odor panel. Rats initiated the trial by poking into the odor port within 5 s after light onset.

If a trial was initiated successfully, an odor would be delivered to the odor port after a 500-ms delay. Odor delivery continued until

the rats withdrew their noses from the odor port. The trial was aborted (indicated by light off) if the rat left the odor port in less

than 500 ms. Otherwise, at the time of leaving the odor port, rats had a 2 s time window to respond at the fluid well. On trials with

rewards, responding at the fluid well in time led to the delivery of a sucrose solution (10% w/v; 50 mL) after a delay of 400 –

1500 ms. After the rats consumed the sucrose solution and left the well, the house lights were turned off, indicating the end of the

trial and the beginning of the ITI. If the rat did not respond within the 2 s window, the house lights were turned off at the end of

the 2 s period. If the rat responded at the fluid well within the 2 s time window on a non-reward trial, an exceptionally rare event in

recording, the house lights were extinguished, an indication of the end of a trial, and no reward was delivered. A 4 s ITI followed cor-

rect ‘‘Go’’ or ‘‘No-Go’’ trials, and an 8 s ITI followed trials on which the rat made an error.

On each trial, one of 16 odors were delivered. The 16 odors were organized into two pairs of sequences (S1a, S1b, S2a, and S2b) as

below. Reward and non-reward trials were labeled as positive (+) and negative (�), respectively, following the odor numbers.

S1a: 0+ 1- 4- 5+ 6- 7+

S1a: 2+ 3- 4- 5+ 6- 7+

S2a: 8+ 9- 12- 13+ 14- 15+

S2b: 10+ 11- 12- 13- 14+ 15+
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Before training with any odors, rats were first shaped to nosepoke at the odor port and then respond at the well for a reward. Then,

they were trained to discriminate an odor pair (one rewarded and one non-rewarded odor) from sequence 1a or 1b. Sessions con-

sisted of a maximum of 480 trials. After rats reached a high criterion in performance (> 90% correct ratio), additional odor pairs were

added until the rats were able to perform well in a session containing sequences 1a and 1b. After learning sequences 1a and1b, rats

were trained to discriminate between odors 13/14 from sequence 2, including several reversals of the valence of the pair. After the

third reversal, additional odor pairs were added from sequence 2 if the rats were able to maintain accurate performance (> 75% cor-

rect) on each trial type. Once sequence 2 had been fully introduced in this manner, the rats began sessions containing both pairs of

sequences (S1a, S1b, S2a, and S2b).

In this final training phase, each sequence was repeated for 20 times to make 480 trials in total. Sequences 1a and 1b were always

followed by 2a or 2b with roughly equal probability (0.55 and 0.45, respectively). Sequence 2a and 2b were always followed by 1a or

1b also with slightly more dissymmetry in probability (0.67 and 0.37, respectively). The overall sequence was repeated from start to

finish in each session.

1b 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a 1a 2b 1b 2a 1b 2a 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a 1a 2b 1a 2a 1b

2a 1b 2a 1a 2b 1a 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2b 1b 2a 1a 2a 1a 2b 1b 2b 1b 2b 1b 2a 1b 2b 1a 2a 1a 2b 1a 2a

Before electrode implantation, animals were kept training on the full sequence for at least three weeks until they were able to

perform well (> 75% correct) on every trial type.

Surgical Procedures
Rats were implanted with a drivable bundle of 16 stereotrodes made from nickel-chromiumwires (17.8 mm in bare diameter; AM Sys-

tems, WA) that targeted the left hippocampal CA1 (AP: �3.5 mm; ML: 2 mm). Wire bundles were housed in a cannula and cut with a

pair of fine surgical scissors to extend 1.5 – 2mmbeyond the end of the cannula inside the brain. The tips of wires were initially placed

at 1 mm ventral from the brain surface. After surgery, rats were given Cephalexin (15 mg/kg) orally twice a day for two weeks to pre-

vent any infection.

Single-Unit Recording
Electrophysiological signals were recorded with the Plexon Multichannel Acquisition Processor (MAP) systems (Plexon, Dallas, TX).

The initial signals collected by the electrodes were sequentially amplified through a headstage (20 3 ), a differential preamplifier

(50 3 ), and a final acquisition processor (1 – 32 3 ). A low pass filter (300 Hz) was used to record field potentials, while a band-

pass filter (250 – 8, 000 Hz) was used to isolate spike activities. For spike recordings, a threshold was set manually for each active

channel to capture unsorted spikes. Timestamps for behavioral events were sent to the Plexon system, synchronized and recorded

alongside the neural activity. Spikes were sorted to identify single units offline using Offline Sorter (Plexon, Dallas, TX) with a template

matching algorithm. Sorted files were exported as NeuroExplorer (Nex Technologies, Colorado Springs, CO) formatted files to

extract unit and behavioral event timestamps, which were then exported as MATLAB (MathWorks, Natick, MA) files for further

analysis.

After two-week recovery from the surgery, the electrodes were slowly moved down (�10 mm each time) over �2 weeks to search

for strong theta and sharp-wave signals in the local field potentials, indicators of the hippocampal CA1 area. The electrodes were

considered to be in the hippocampal CA1 area when both the field potential signatures (theta and sharp-wave signals) and typical

pyramidal neurons (wide waveforms and low baseline firing rates) appeared. Recording sessions continued daily until pyramidal ac-

tivity disappeared. The electrodes were moved down by�40 mm every two weeks or by�20 mmdue to the lack of pyramidal activity.

At the end of testing, rats were euthanized by an overdose of isoflurane. The final positions of electrodes were marked by passing a

small constant current through the wires, and the brains were processed with Nissl staining for histological examination.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of rats and the number of neurons were not predetermined by any statistical methods but are comparable to those re-

ported in previous publications from our lab. All data were analyzed using MATLAB (MathWorks, Natick, MA).

Task Events and Peri-event Spike Train Analysis
Each trial was divided into 6 epochs associated with different task events: ‘‘light,’’ ‘‘poke,’’ ‘‘odor,’’ ‘‘unpoke,’’ ‘‘choice,’’ and

‘‘outcome.’’ On rewarded trials, the time of well-entry was labeled as ‘‘choice.’’ The ‘‘outcome’’ was at the time of reward delivery.

On unrewarded trials, the end of the 2 s window for responding was labeled as ‘‘choice’’ and a time point 1.5 s after the ‘‘choice’’ as

the ‘‘outcome.’’ Behavioral performance was quantified as the percent of trials on which the rats responded correctly, their reaction

time from the odor port to the fluidwell, and the latencywith which they initiated a trial after light onset. The data analysis only included

sessions in which the percent correct was above 75% for every trial type. Error trials were removed for all the analyses. The spike train

for each isolated single unit was aligned to the onset of each task event. Pre-event time was set to be 200 ms, and post-event time

600 ms. Spike number was counted with a bin = 100 ms. A Gaussian kernel (s = 50 ms) was used to smooth the spike train on each

trial.
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Classification Analyses
We used a linear discriminant analysis (LDA) algorithm (MATLAB function: fitcdiscr) to classify 24 trial types or states for each one of

six task events. Neurons recorded from different sessions were aligned to form pseudo-ensembles. Firing rates during a period of

100 – 600 ms after each task event were used for classification of 24 states. Each trial was seen as an observation that contained

firing rates from 2, 056 neurons from the HPC or 1, 078 neurons from the OFC (480 trials in total but only 360 trials were used in

this study as a result of the removal of error trials; 360 trials = 24 trial types 3 15 trials). The classification accuracy was assessed

by leave-one-out cross-validation. Specifically, one trial from each trial type was left out for future testing, and all the other trials

were used for the training. Principal component analysis (PCA) was used for feature extraction and dimension reduction in the training

set. The classifier was trained on the principal components (PCs) necessary to explain 80% variance (HPC: 103.7 ± 0.5 PCs; OFC:

151.2 ± 0.4 PCs). The same PCA transformation from the training set was applied to the test set. Trial order for each neuron was

shuffled within the same trial type. The trial-order shuffling was repeated for 100 times. For each time of trial-order shuffling, the

leave-one-out cross-validation was repeated for 500 times to estimate the decoding accuracy. The mean decoding accuracy for

each trial type as shown in the confusion matrix was the mean across 100 runs (corresponding to 100 times of trial-order shuffling).

The statistical significance of the mean decoding accuracy was determined by the 95% confidence interval estimated by running the

same decoding processwith label-shuffled data. For the binary classification of subsequences at each time point (bin size: 100ms) or

after task event (time period: 100 - 600ms), the processeswere the same except only the first three PCswere used, and the trial-order

shuffling was repeated for 200 times.

Hierarchical Clustering Analyses
The hierarchical agglomerative clustering was performed on data that was projected onto the LDA space. Each trial was organized as

a vector with firing rates of neurons as dimensions. The original data was first transformed to PCA space with 80% variance retained,

then transformed to LDA space supervised by 24 trial-type labels. A dissimilarity matrix was computed by measuring the Mahalano-

bis distance between each pair of trial-type means. Based on the dissimilarity matrix, an agglomerative hierarchical cluster tree was

generated with the unweighted average distance method. The clustering results were plotted as dendrograms.

DATA AND CODE AVAILABILITY

The dataset and MATLAB scripts used in this study will be made available upon request by the lead contact, Geoffrey Schoenbaum

(geoffrey.schoenbaum@nih.gov).
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