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Abstract 11 

The orbitofrontal cortex (OFC) has been proposed to encode expected outcomes, which is thought to be 12 

important for outcome-directed behavior. However, such neural encoding can also often be explained by 13 

the recall of information about the recent past. To dissociate the retrospective and prospective aspects of 14 

encoding in the OFC, we designed a non-spatial, continuous, alternating odor-sequence task that mimicked 15 

a continuous T-maze. The task consisted of two alternating sequences of four odor-guided trials (2 16 

sequences × 4 positions). In each trial, rats were asked to make a “go” or “no-go” action based on a fixed 17 

odor-reward contingency. Odors at both the first and last positions were distinct across the two sequences, 18 

such that they resembled unique paths in the past and future, respectively; odors at positions in between 19 

were the same and thus resembled a common path. We trained classifiers using neural activity to 20 

distinguish between either sequences or positions and asked whether the neural activity patterns in the 21 

common path were more like the ones in the past or the future. We found a proximal prospective code for 22 

sequence information as well as a distal prospective code for positional information, the latter of which was 23 

closely associated with rats’ ability to predict future outcomes. This study demonstrates a prospective 24 

behaviorally-relevant predictive code in rat OFC.  25 
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Introduction 26 

The orbitofrontal cortex (OFC) signals expected outcomes, which is believed to be fundamentally important 27 

for outcome-directed behavior (Rudebeck & Murray, 2014; Stalnaker, Cooch, & Schoenbaum, 2015; Wallis, 28 

2011). The vast majority of electrophysiological evidence supporting this assertion comes from behavioral 29 

settings where different cues predict reward outcomes with different sizes, identities, probabilities, and 30 

delays, etc (Kepecs, Uchida, Zariwala, & Mainen, 2008; Klein-Flugge, Barron, Brodersen, Dolan, & Behrens, 31 

2013; Padoa-Schioppa & Assad, 2006; Roesch, Taylor, & Schoenbaum, 2006; Tremblay & Schultz, 1999). 32 

Meanwhile, the past sensory cues, rewards, spatial directions, and behavioral choices are also reported to 33 

be reflected in the OFC neural activities (Feierstein, Quirk, Uchida, Sosulski, & Mainen, 2006; Kennerley, 34 

Behrens, & Wallis, 2011; Nogueira et al., 2017; Riceberg & Shapiro, 2017; Saez, Saez, Paton, Lau, & Salzman, 35 

2017; Young & Shapiro, 2011; Zhou, Jia, Feng, Bao, & Luo, 2015). Such findings have been taken as evidence 36 

that the OFC, together with contributions from other interconnected brain regions such as the 37 

hippocampus, might provide a neural mechanism with which animals could mentally travel through a task 38 

model in time and recall the past events and simulate future outcomes (Behrens et al., 2018; Wang, 39 

Schoenbaum, & Kahnt, 2020; Wikenheiser & Schoenbaum, 2016; R. C. Wilson, Takahashi, Schoenbaum, & 40 

Niv, 2014). 41 

However, from studies where different past cues or episodes lead to different future outcomes, it is not 42 

clear whether the neural patterns observed are representing the future versus simply providing a record of 43 

past events. Additionally, in most behavioral settings, future events consist of rewards, whereas past events 44 

are normally intrinsically-neutral sensory cues. As a result, prioritized reward value processing would lead 45 

to a biased finding of stronger prospective coding (Wallis, 2007; Xie, Nie, & Yang, 2018).  46 

In the present study, we resolved these confounds by recording single-unit activity in the OFC of rats 47 

performing a non-spatial, continuous odor sequence task, conceptually similar to a continuous T-maze. 48 

Combining both single-unit and neural ensemble analyses, we tested whether the OFC neural ensemble 49 

patterns during the overlapping paths in the “virtual” T-maze task resemble neural activities that occur in 50 

the past or in the future.   51 
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Results 52 

Continuous, alternating odor-sequence task 53 

The behavioral task developed in this study was designed to mimic the continuous T-maze alternation task 54 

that has been commonly used to assess spatial memory (Greene & Naranjo, 1986; Verma & Moghaddam, 55 

1996). Rather than moving through a sequence of locations in space, subjects moved through a sequence of 56 

odors. On each trial in the odor sequence (Figure 1A), the rats were presented with the appropriate odor at 57 

a central port and then had to decide whether to respond for a sucrose reward by poking into a fluid well 58 

(“Go”) or to withhold responding on non-rewarded trials (“No-Go”). The decision to respond for reward 59 

could be made correctly based simply on odor identity, or by using information available from the 60 

sequence. The task used 6 different odors, arranged in two 4-odor sequences: S1 and S2 (Figure 1B). The 4 61 

odors in each sequence were designated as 4 positions (P1 – P4).  62 

After training in this simple task, we recorded single-unit activity bilaterally from the lateral OFC (n = 1568 63 

neurons; 4 rats). During recording, the rats performed the task with high accuracy as assessed by percent 64 

correct (%correct; Figure 1D) on each of the 8 trial types. Importantly, we also found the time rats spent to 65 

initiate a trial (i.e., poke latency; Figure 1E) was different depending on reward availability on current 66 

trials, suggesting the rats were using information available from the sequence structure to make 67 

predictions about future outcomes that influenced their responses.  68 

As in a continuous T-maze alternation task, each position shares the same past, current, and future reward 69 

structure, thereby eliminating any bias that value might have on prospective versus retrospective encoding. 70 

Further, differences in sensory experience are structured, so that some positions (P1 and P4) differ locally, 71 

since the odors are unique at these positions in S1 and S2, while sharing the same recent past and future 72 

events (they come from and return to P2 and P3, each of which share a single odor cue in S1 and S2), 73 

whereas other positions (P2 and P3) are similar locally, since the local odors are the same, but differ in 74 

recent past and future events (they come from and go to P1 and P4, each of which have different odor cues 75 

in each sequence). This arrangement provides a unique opportunity to dissociate retrospective versus 76 

prospective neural representations. Specifically, activity distinguishing the sequences should weaken 77 

across P2 and P3 if it is retrospective, while it should grow stronger if it is prospective. Further 78 

retrospective activity might resemble neural activity patterns from the past (P1), while prospective activity 79 

might resemble activity in the future (P4). We analyzed activity recorded in OFC in well-trained rats 80 

performing this task to test these predictions.  81 

Distinguishing odor sequences by OFC single-units and neural ensembles 82 
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We first examined OFC neural activity at the single-unit level. We found some neurons showing differential 83 

responses to sequences S1 and S2 at all 4 positions (Figure 2A-D). A selectivity analysis indicated that the 84 

neurons showed the most selectivity at P1 and P4 around odor sampling, with fewer neurons showing 85 

selectivity at P2 and P3 (Figure 3A). Indeed, the number of selective neurons was above the chance level 86 

(5%) only around the odor for P2 and after the outcome for P3.  87 

Next, we examined the ability of the pattern of activity across all recorded neurons to decode sequences (S1 88 

vs. S2) within the individual task epochs at each position. Consistent with the single-unit selectivity 89 

analysis (Figure 3A), decoding accuracy was the highest at P1 and P4, while at P2, the highest decoding 90 

happened before and after the odor delivery, and at P3, the highest decoding happened after the outcome 91 

(Figure 3B-C).  92 

A proximal prospective code about odor sequences 93 

To study whether the neural patterns during the delay epochs (epochs after P1 odor time and before P4 94 

odor time) resembled the past (S1 vs. S2; odors 5+ vs. 3+ at P1) or the future (S1 vs. S2; odors 2+ vs. 4+ at 95 

P4), we trained linear support vector machine (SVM) classifiers to distinguish the sequences during the 96 

odor period at either P1 or P4 (i.e., retrospective and prospective templates; Figure 4A-B) and then used 97 

each classifier to decode the neural activity patterns in all task epochs. This analysis revealed chance 98 

decoding at most points at the delay epochs, particularly for decoding by the classifier trained with the 99 

retrospective template, which dropped to chance immediately after odor sampling in P1 (Figure 4A). 100 

Decoding by the prospective template was also at chance for most of the delay epochs, however it increased 101 

rapidly at the inter-trial interval (ITI) and initial epochs of the P4 trials before the odor was presented 102 

(Figure 4B), suggesting the emergence of a prospective representation of the impending odors.  103 

A distal prospective code to reflect future positions 104 

A prospective code distinguishing the odor sequences was apparent in the run up to the odor in P4, 105 

however the prior analysis found no evidence of a stable, sustained prospective code across the entire 106 

delay epoch. This is not completely surprising because, as we previously reported, sequences in an odor 107 

sequence task tend to be generalized in the OFC if distinguishing them is not necessary for the rats to 108 

correctly perform the task (Zhou et al., 2019). This is even true when the odors differ at a given position, 109 

thus the failure of OFC to distinguish the sequences during P2 and P3 here is consistent with that prior 110 

data.  111 

However the positional information was task-relevant since it was used by rats to calculate their current 112 

distance to future reward, evidenced by their different poke latencies on trial types with different 113 
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probabilities of reward (Figure 1E). Thus we next asked whether we could find a prospective code for this 114 

positional information (i.e., a mental simulation of future epochs collapsing across the sequence information 115 

at each position) during the delay epochs. 116 

To do this, we lumped S1 and S2 together at each task epoch and built a binary SVM classifier using neural 117 

activity from odor sampling during P1 and P4 (P1 vs. P4; odor time); then we used this classifier to 118 

reexamine how the neural activity patterns evolved during the delay epochs (Figure 5). Interestingly this 119 

analysis did not reveal a clear pattern of representation when averaged across rats, however when each rat 120 

was analyzed separately it revealed significant prospective activity in 3 subjects that was masked by 121 

retrospective activity in one subject (Figure 6A-D). Importantly, such a prospective code appeared early at 122 

P2 and P3 (Rat #2 and #3), and even at P1 (Rat #4), in a phasic but not tonic manner, which is dramatically 123 

different from the proximal prospective code about sequences as shown in Figure 4. Moreover, the 124 

emergence of a distal prospective ensemble code during the delay epochs was closely associated with rats’ 125 

poke latency; the stronger the prospective activity, the stronger the poke latency differed prior to rewarded 126 

versus non-rewarded trials for a subject (Figure 6E-H).  127 

To further confirm this finding, we plotted the individual sessions based on the poke latency difference 128 

between rewarded and non-rewarded trial types (Figure 7). The bimodal distribution in Figure 7A shows 129 

that the sessions with low differences (i.e. little influence of future outcome) all came from Rat #1. When 130 

these sessions were excluded, the analysis revealed a clear prospective code similar to that was seen with 131 

individual rats (Figures 7B, 6B-D).  132 

Together, these results suggest that both proximal and distal prospective codes exist in the OFC neural 133 

ensemble activities.  134 
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Discussion 135 

Through analyzing neural activities recorded in the OFCs of rats performing an odor sequence alternation 136 

task, we found two types of prospective neural ensemble codes for future events. OFC ensembles used a 137 

proximal code for immediate sequence information, while used a distal neural code for future positional 138 

information. The finding provides direct electrophysiological evidence that OFC activity anticipates the 139 

future even when confounds related to differences in past events or the prioritization of future reward 140 

information are controlled.  141 

The stringent control on possible confounds addresses gaps in our understanding that are typically 142 

ignored. For instance, differential activity after a cue but before a reward is often taken as evidence of 143 

encoding of expected outcomes and yet it could equally well be a retrospective activity, a reflection of trace 144 

memory. Further, even if multiple cues are used to predict the same reward, the value asymmetry could 145 

lead to a bias toward apparently prospective representation even where a functional bias does not exist. 146 

The task used here, though simple to perform and perhaps a bit boring even, resolves these confounds, 147 

allowing us to discern activity that is clearly prospective. 148 

The distal prospective ensemble code is particularly intriguing because it seems to fit well with a role in 149 

prospective memory (“remembering to remember”), a higher-order brain function found in humans, non-150 

human primates, and rodents (Beran, Evans, Klein, & Einstein, 2012; Beran, Perdue, Bramlett, Menzel, & 151 

Evans, 2012; Evans & Beran, 2012; McDaniel & Einstein, 2007; A. G. Wilson & Crystal, 2012; A. G. Wilson, 152 

Pizzo, & Crystal, 2013). There are proposed to be three phases of prospective memory: activation or initial 153 

encoding -> inactivation when subjects are engaged in other irrelevant activities -> and reactivation when 154 

relevant information (event-based or time-based) is encountered (McDaniel & Einstein, 2007; A. G. Wilson 155 

& Crystal, 2012; A. G. Wilson et al., 2013). The pattern of prospective encoding identified here in OFC 156 

matches this evolution, mostly disappearing in the ITI periods and during the delay epochs except for brief 157 

activations when relevant sensory information was delivered around the odor period. This pattern 158 

illustrates that OFC is important for anticipating future events but also illustrates that active spiking in OFC 159 

is not sufficient for the memory to be maintained. OFC is likely supported in this by other brain regions, 160 

which may hold sustained or dynamic neural activation during the long delay time. However it is likely that 161 

maintaining such information across the relatively long delay period used here requires additional 162 

mechanisms such as short-term synaptic plasticity, either in OFC or elsewhere, which is not necessarily 163 

reflected in increased or decreased neural firing rates (Barbosa et al., 2020; Mongillo, Barak, & Tsodyks, 164 

2008; Stokes, 2015). More investigations are needed in the future to shed light on this important question.  165 
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METHODS & MATERIALS 182 

Subjects 183 

Subjects were 4 male Long-Evans rats (Charles River, 175 – 200 g, ~3-month-old) individually housed on a 184 

12-h light/dark cycle and given ad libitum access to food in an animal facility at the AAALAC-accredited 185 

animal care facility at the National Institute on Drug Abuse Intramural Research Program (NIDA-IRP). Rats 186 

were water-deprived the day before any testing and received free access to water for 10 min in their home 187 

cages each afternoon after testing. If there was no testing the next day, the rats were given free access to 188 

water. All behavioral testing was carried out at the NIDA-IRP. Animal care and experimental procedures 189 

complied with the U.S. National Institutes of Health (NIH) guidelines and were approved by the Animal 190 

Care and Use Committee (ACUC) at the NIDA-IRP. 191 

Behavioral task 192 

The behavioral training was conducted in aluminum boxes (~18” on a side) equipped with a port for odor 193 

delivery and a well for delivery of sucrose solution. Task events were controlled by a custom-written C++ 194 

program and a system of relays and solenoid valves; entries into the odor port and the fluid well were 195 

detected by infrared beam sensors. The availability of each trial was signaled by the illumination of two 196 

house-lights located on the wall above the odor port. Nosepoke into the odor port within 5 seconds after 197 

light onset initiated the trial, leading to odor delivery after a 500-ms delay. Rats were required to remain in 198 

the port for an additional 500-ms; the trial was aborted, and the lights extinguished if the rat left the odor 199 

port before this time had elapsed. After 500-ms, the rats were free to leave the port, which terminated odor 200 

delivery. After port exit, rats had 2-s to respond at the fluid well. On rewarded trials, a response led to the 201 

delivery of a sucrose solution (10% w/v; 50 µL) after a random delay ranging from 400 to 1500-ms. Upon 202 

exit from the well, non-responding during the 2-s period, or responding on non-rewarded trials, the house 203 

lights were extinguished, indicating the end of the trial and the beginning of the inter-trial interval (ITI). A 204 

4-s ITI followed correct trials, and an 8-s ITI followed trials on which the rat made an error. 205 

On each trial, one of 6 odors was delivered to the odor port. The 6 odors were organized into two 206 

sequences (S1 and S2) that occurred in turn repeatedly (S1→S2→S1→S2→…→S1→S2; 40 repeats of each 207 

sequence), described as below. The odor identity is indicated by a number, and reward and non-reward is 208 

indicated by the positive (+) and negative (-) symbols, respectively: 209 

S1: 5+ 0- 1- 2+ 210 

S2: 3+ 0- 1- 4+ 211 
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Rats were trained on the full set of sequences since Day 1 until they were able to perform accurately (> 212 

75% correct) on every trial type in a session, then electrode arrays were implanted bilaterally in OFC.  213 

Surgical procedures 214 

Rats were implanted with two drivable bundles of 16 electrodes (32 electrodes in total), made from nickel-215 

chromium wires (25 µm in bare diameter; AM Systems, WA) in bilateral OFCs (AP: 3 mm, ML: 3.2 mm). 216 

Each wire bundle was housed in a 27-gauge stainless-steel tubing and cut with a pair of fine spring scissors 217 

to extend 1.5 – 2 mm beyond the end of the tubing. The tips of wires were initially placed at 4.2 mm ventral 218 

from the brain surface. After surgery, rats were given Cephalexin (15 mg/kg) orally twice a day for two 219 

weeks to prevent any infection.  220 

Single-unit recording 221 

Electrophysiological signals and behavioral event timestamps were recorded with the Plexon OmniPlex 222 

System (Plexon, Dallas, TX). The initial wideband signals collected by the electrodes were amplified and 223 

digitalized at 40 kHz through a digital headstage (Digital Headstage Processor; DHP) and filtered in the 224 

control software (PlexControl) to isolate spike-band frequency (250 – 8, 000 Hz) signals. Before the start of 225 

each recording session, a common median reference (CMR) for each electrode bundle (16 electrodes in 226 

each bundle; two bundles for each rat) was used to remove online noise and artifact. A threshold for each 227 

channel was set manually for each active channel to capture unsorted spikes. Spikes were sorted later 228 

offline to remove noise and isolate single units using Offline Sorter (Plexon, Dallas, TX) with a built-in 229 

template matching algorithm. Sorted files were saved as NeuroExplorer (Nex Technologies, Colorado 230 

Springs, CO) formatted files, which were exported to MATLAB (MathWorks, Natick, MA) to extract unit and 231 

behavioral event timestamps and for further analyses. Immediately after each session, the electrodes were 232 

moved 40~80 μm ventrally in order to change the neural population being sampled.  233 

After the recording experiments, rats were euthanized by an overdose of isoflurane and perfused with 234 

phosphate-buffered saline (PBS) followed by 4% paraformaldehyde. A small constant current was passed 235 

through each of the electrode wires to mark the final locations of electrodes. Brains were cut in 40 μm for 236 

standard histological examination. 237 

Quantification and statistical analyses 238 

The number of rats and neurons were not predetermined by any statistical methods but are comparable to 239 

those reported in previous publications from our lab. All data were analyzed using MATLAB (MathWorks, 240 

Natick, MA). 241 
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Peri-event spike dynamics 242 

Each trial was separated into 9 epochs associated with different task events: “ITI-a”, “Light”, “Poke”, “Odor”, 243 

“Unpoke”, “Choice”, and “Outcome”, “postOutcome”, “ITI-b”. “ITI-a” marked the time point 0.7 s before the 244 

house-light on. On reward trials, the time of well-entry was labeled as “Choice”. “Outcome” was at the time 245 

of reward delivery. On non-reward trials, the end of the 2-second window for responding was labeled as 246 

“Choice” and a time point 0.7 s after the “Choice” as “Outcome”. On both reward and non-reward trials, 0.7 s 247 

after the outcome was labeled as “postOutcome”, and 0.7 s after that was labeled as “ITI-b”. Behavioral 248 

performance was quantified by the percent of trials on which the rats responded correctly and the latency 249 

with which they initiated a trial after light onset. The spike train for each isolated single unit was aligned to 250 

the onset of each task event for the calculation of a peri-event time histogram (PETH). Pre-event time was 251 

set to be 200 ms, and post-event time 600 ms. Spike number was counted with a bin = 100 ms. A Gaussian 252 

kernel (σ = 50 ms) was used to smooth the PETH on each trial.  253 

For further analyses, only 30 correct trials were randomly selected from each trial type (30 trials × 8 trial 254 

types = 240 trials in total); and the post-event firing rates (100 – 600 ms) were averaged to obtain a single 255 

measurement of neural activity for each neurons on each trial at each task epoch.  256 

Classification analyses 257 

The neural data at each task epoch was organized as a 2-dimensional matrix (trials × neurons) in a way 258 

that each row represents one trial and each column represents the firing rates of one neuron in all the 259 

trials. In other words, each trial is a vector in which each dimension is the firing rate of one neuron. 260 

Neurons recorded from different sessions were concatenated with alignment to the trials to form pseudo-261 

ensembles. We shuffled trial orders within each trial type to generate a different pseudo-ensemble as well 262 

as to remove the temporal correlation between neurons. The trial-order shuffling was repeated for 10, 000 263 

times such that 10, 000 pseudo-ensembles were generated. 264 

We used the linear support vector machine (SVM) for classification analyses (Chang & Lin, 2011). The 265 

classification accuracy was assessed by a leave-one-out cross-validation procedure. Specifically, one trial 266 

from each trial type was left out for future testing, and all the other trials were used to train the classifier. 267 

For each pseudo-ensemble, the leave-one-out cross-validation was repeated 200 times to estimate a mean 268 

decoding accuracy. The decoding analyses were carried out on the 10, 000 pseudo-ensembles to obtain an 269 

overall mean decoding accuracy. The statistical significance of the overall mean decoding accuracy was 270 

determined by the 95% confidence interval estimated by running the same decoding process with label-271 
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shuffled pseudo-ensembles. For cross-epoch classification analyses, we followed the same procedure but 272 

with training and test sets from different task epochs.   273 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.27.268391doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.268391


REFERENCES 274 

Barbosa, J., Stein, H., Martinez, R. L., Galan-Gadea, A., Li, S., Dalmau, J., . . . Compte, A. (2020). Interplay between 275 
persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working 276 
memory. Nature Neuroscience, 23, 1016–1024.  https://doi.org/10.1038/s41593-020-0644-4 277 

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. 278 
(2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490-509.  279 
http://dx.dio.org/10.1016/j.neuron.2018.10.002 280 

Beran, M. J., Evans, T. A., Klein, E. D., & Einstein, G. O. (2012). Rhesus monkeys (Macaca mulatta) and capuchin 281 
monkeys (Cebus apella) remember future responses in a computerized task. The Journal of Experimental 282 
Psychology: Animal Behavior Processes, 38(3), 233-243.  http://dx.dio.org/10.1037/a0027796 283 

Beran, M. J., Perdue, B. M., Bramlett, J. L., Menzel, C. R., & Evans, T. A. (2012). Prospective memory in a 284 
language-trained chimpanzee (Pan troglodytes). Learning and Motivation, 43(4), 192-199.  285 
http://dx.dio.org/10.1016/j.lmot.2012.05.002 286 

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent 287 
Systems and Technology, 2(3), 1-27.  http://dx.dio.org/10.1145/1961189.1961199 288 

Evans, T. A., & Beran, M. J. (2012). Monkeys exhibit prospective memory in a computerized task. Cognition, 289 
125(2), 131-140.  http://dx.dio.org/10.1016/j.cognition.2012.07.012 290 

Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L., & Mainen, Z. F. (2006). Representation of spatial goals in 291 
rat orbitofrontal cortex. Neuron, 51(4), 495-507.  http://dx.dio.org/10.1016/j.neuron.2006.06.032 292 

Greene, E., & Naranjo, J. N. (1986). Thalamic role in spatial memory. Behavioural Brain Research, 19(2), 123-131.  293 
http://dx.dio.org/10.1016/0166-4328(86)90010-0 294 

Kennerley, S. W., Behrens, T. E., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal 295 
and anterior cingulate neurons. Nature Neuroscience, 14(12), 1581-1589.  296 
http://dx.dio.org/10.1038/nn.2961 297 

Kepecs, A., Uchida, N., Zariwala, H. A., & Mainen, Z. F. (2008). Neural correlates, computation and behavioural 298 
impact of decision confidence. Nature, 455(7210), 227-231.  http://dx.dio.org/10.1038/nature07200 299 

Klein-Flugge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J., & Behrens, T. E. (2013). Segregated encoding of 300 
reward-identity and stimulus-reward associations in human orbitofrontal cortex. The Journal of 301 
Neuroscience, 33(7), 3202-3211.  http://dx.dio.org/10.1523/JNEUROSCI.2532-12.2013 302 

McDaniel, Mark A., & Einstein, Gilles O. (2007). Prospective memory : an overview and synthesis of an emerging 303 
field. Thousand Oaks, Calif.: SAGE Publications. 304 

Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543-305 
1546.  http://dx.dio.org/10.1126/science.1150769 306 

Nogueira, R., Abolafia, J. M., Drugowitsch, J., Balaguer-Ballester, E., Sanchez-Vives, M. V., & Moreno-Bote, R. 307 
(2017). Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. 308 
Nature Communications, 8, 14823.  http://dx.dio.org/10.1038/ncomms14823 309 

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 310 
441(7090), 223-226.  http://dx.dio.org/10.1038/nature04676 311 

Riceberg, J. S., & Shapiro, M. L. (2017). Orbitofrontal cortex signals expected outcomes with predictive codes 312 
when stable contingencies promote the integration of reward history. The Journal of Neuroscience, 313 
37(8), 2010-2021.  http://dx.dio.org/10.1523/JNEUROSCI.2951-16.2016 314 

Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006). Encoding of time-discounted rewards in orbitofrontal 315 
cortex is independent of value representation. Neuron, 51(4), 509-520.  316 
http://dx.dio.org/10.1016/j.neuron.2006.06.027 317 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.27.268391doi: bioRxiv preprint 

https://doi.org/10.1038/s41593-020-0644-4
http://dx.dio.org/10.1016/j.neuron.2018.10.002
http://dx.dio.org/10.1037/a0027796
http://dx.dio.org/10.1016/j.lmot.2012.05.002
http://dx.dio.org/10.1145/1961189.1961199
http://dx.dio.org/10.1016/j.cognition.2012.07.012
http://dx.dio.org/10.1016/j.neuron.2006.06.032
http://dx.dio.org/10.1016/0166-4328(86)90010-0
http://dx.dio.org/10.1038/nn.2961
http://dx.dio.org/10.1038/nature07200
http://dx.dio.org/10.1523/JNEUROSCI.2532-12.2013
http://dx.dio.org/10.1126/science.1150769
http://dx.dio.org/10.1038/ncomms14823
http://dx.dio.org/10.1038/nature04676
http://dx.dio.org/10.1523/JNEUROSCI.2951-16.2016
http://dx.dio.org/10.1016/j.neuron.2006.06.027
https://doi.org/10.1101/2020.08.27.268391


Rudebeck, P. H., & Murray, E. A. (2014). The orbitofrontal oracle: cortical mechanisms for the prediction and 318 
evaluation of specific behavioral outcomes. Neuron, 84(6), 1143-1156.  319 
http://dx.dio.org/10.1016/j.neuron.2014.10.049 320 

Saez, R. A., Saez, A., Paton, J. J., Lau, B., & Salzman, C. D. (2017). Distinct roles for the amygdala and orbitofrontal 321 
cortex in representing the relative amount of expected reward. Neuron, 95(1), 70-77 e73.  322 
http://dx.dio.org/10.1016/j.neuron.2017.06.012 323 

Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nat 324 
Neurosci, 18(5), 620-627.  http://dx.dio.org/10.1038/nn.3982 325 

Stokes, M. G. (2015). 'Activity-silent' working memory in prefrontal cortex: a dynamic coding framework. Trends 326 
in Cognitive Sciences, 19(7), 394-405.  http://dx.dio.org/10.1016/j.tics.2015.05.004 327 

Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 328 
398(6729), 704-708.  http://dx.dio.org/10.1038/19525 329 

Verma, A., & Moghaddam, B. (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed 330 
via spatial delayed alternation performance in rats: modulation by dopamine. The Journal of 331 
Neuroscience, 16(1), 373-379.  https://dx.doi.org/10.1523/JNEUROSCI.16-01-00373.1996 332 

Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 333 
30, 31-56.  http://dx.dio/org/10.1146/annurev.neuro.30.051606.094334 334 

Wallis, J. D. (2011). Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat Neurosci, 335 
15(1), 13-19.  http://dx.dio.org/10.1038/nn.2956 336 

Wang, F., Schoenbaum, G., & Kahnt, T. (2020). Interactions between human orbitofrontal cortex and 337 
hippocampus support model-based inference. PLoS Biololgy, 18(1), e3000578.  338 
http://dx.dio.org/10.1371/journal.pbio.3000578 339 

Wikenheiser, A. M., & Schoenbaum, G. (2016). Over the river, through the woods: cognitive maps in the 340 
hippocampus and orbitofrontal cortex. Nature Review Neuroscience, 17(8), 513-523.  341 
http://dx.dio.org/10.1038/nrn.2016.56 342 

Wilson, A. G., & Crystal, J. D. (2012). Prospective memory in the rat. Animal Cognition, 15(3), 349-358.  343 
http://dx.dio.org/10.1007/s10071-011-0459-5 344 

Wilson, A. G., Pizzo, M. J., & Crystal, J. D. (2013). Event-based prospective memory in the rat. Current Biology, 345 
23(12), 1089-1093.  http://dx.dio.org/10.1016/j.cub.2013.04.067 346 

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task 347 
space. Neuron, 81(2), 267-279.  http://dx.dio.org/10.1016/j.neuron.2013.11.005 348 

Xie, Y., Nie, C., & Yang, T. (2018). Covert shift of attention modulates the value encoding in the orbitofrontal 349 
cortex. Elife, 7.  http://dx.dio.org/10.7554/eLife.31507 350 

Young, J. J., & Shapiro, M. L. (2011). Dynamic coding of goal-directed paths by orbital prefrontal cortex. The 351 
Journal of Neuroscience, 31(16), 5989-6000.  http://dx.dio.org/10.1523/JNEUROSCI.5436-10.2011 352 

Zhou, J., Gardner, M. P. H., Stalnaker, T. A., Ramus, S. J., Wikenheiser, A. M., Niv, Y., & Schoenbaum, G. (2019). 353 
Rat orbitofrontal ensemble activity contains multiplexed but dissociable representations of value and 354 
task structure in an odor sequence task. Current Biology, 29(6), 897-907.  355 
http://dx.dio.org/10.1016/j.cub.2019.01.048 356 

Zhou, J., Jia, C., Feng, Q., Bao, J., & Luo, M. (2015). Prospective coding of dorsal raphe reward signals by the 357 
orbitofrontal cortex. The Journal of Neuroscience, 35(6), 2717-2730.  358 
http://dx.dio.org/10.1523/JNEUROSCI.4017-14.2015 359 

 360 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.27.268391doi: bioRxiv preprint 

http://dx.dio.org/10.1016/j.neuron.2014.10.049
http://dx.dio.org/10.1016/j.neuron.2017.06.012
http://dx.dio.org/10.1038/nn.3982
http://dx.dio.org/10.1016/j.tics.2015.05.004
http://dx.dio.org/10.1038/19525
https://dx.doi.org/10.1523/JNEUROSCI.16-01-00373.1996
http://dx.dio/org/10.1146/annurev.neuro.30.051606.094334
http://dx.dio.org/10.1038/nn.2956
http://dx.dio.org/10.1371/journal.pbio.3000578
http://dx.dio.org/10.1038/nrn.2016.56
http://dx.dio.org/10.1007/s10071-011-0459-5
http://dx.dio.org/10.1016/j.cub.2013.04.067
http://dx.dio.org/10.1016/j.neuron.2013.11.005
http://dx.dio.org/10.7554/eLife.31507
http://dx.dio.org/10.1523/JNEUROSCI.5436-10.2011
http://dx.dio.org/10.1016/j.cub.2019.01.048
http://dx.dio.org/10.1523/JNEUROSCI.4017-14.2015
https://doi.org/10.1101/2020.08.27.268391


Figure 1. Task design, histology, and behavioral performance. (A) Single trial of

the behavioral task. Rats sampled one of 6 odors from an odor port on each trial and

made a “Go” choice by poking into a nearby fluid well or a “No-Go” choice by

withholding their responses. (B) The 6 odors were organized into two 4-odor

sequences, named S1 and S2. The four odors in each sequence represent four

positions (P1 – P4). S1 and S2 alternated like a “figure eight”. (C) Reconstruction of

recording sites. Red squares indicate locations of electrodes. (D) Percent correct

(%correct) on each trial type during single-unit recording sessions. Blue indicates trial

types with reward, while red indicates trial types without reward. Error bars are

standard errors of the mean (SEMs). A two-way ANOVA (n = 64 sessions) with factors

sequence (F1,504 = 1.03; p = 0.31; η2 = 0.0014) and position (F3,504 = 84.0; p = 4.3×10-

44; η2 = 0.33) was performed. No significant interaction was observed (F3,504 = 0.66; p

= 0.57; η2 = 0.0026). (E) Poke latency measures the time from light onset to odor port

entry. Error bars are SEMs A two-way ANOVA (n = 64 sessions) with factors

sequence (F1,504 = 0.10; p = 0.75; η2 = 4.0×10-5) and position (F3,504 = 681.0; p

=8.0×10-177; η2 = 0.8) was performed. No significant interaction was observed (F3,504 =

0.79; p = 0.5; η2 = 9.3×10-4).
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Figure 2. Example of single-units. (A-D) Four example neurons that exhibited differential firing to sequences

S1 versus S2 at different positions (P1 – P4, indicated by grey arrows). Blue and red colors mean reward and

non-reward trial types, respectively. Shaded areas indicate SEMs.
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B

C

A

Figure 3. Discriminating sequences S1 versus S2 at both the single-unit and neural

ensemble levels. (A) The neuronal selectivity to sequences S1 versus S2 of each neuron was

calculated at different epochs [“ITI-a”, “Light”, “Poke”, “Odor”, “Unpoke”, “Choice”, “Outcome”,

“postOut. (postOutcome)”, “ITI-b”] for all the four positions (p < 0.05; One-way ANOVA). The p

values were not corrected; the dotted lines indicate the chance or baseline level of selectivity given

this criterion. Note that only at two task epochs [“Odor” at P3 and P4; black bars] could the rats

discriminate the two sequences (S1 versus S2) only based on current sensory information. At all

other task epochs, shown as grey bars, an internal memory of the sequences had to be used. (B)

Accuracy of decoding S1 versus S2 in each of the 9 task epochs within each position (P1 – P4).

Error bars are standard deviations (SDs) and each asterisk indicates that the mean decoding

accuracy exceeds a 95% confidence interval (CI) calculated using the same decoding process but

with label-shuffled data. The meaning of black bars is the same as in panel A. (C) Accuracy of

decoding S1 versus S2 at each position with different ensemble sizes. Task epochs used for P1,

P2 and P4 are “Poke” and “Odor”, while task epochs used for P3 are “Post-Out.” and “ITI-b”. Error

bars show SDs and the asterisks indicate that the mean decoding accuracy exceeds 95% CIs as

results of decoding with shuffled trial labels.
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Figure 4. Cross-epoch decoding of sequences (A) Each dot represents a single trial in the high-dimensional

ensemble activity space (n = 30 trials for each trial type). A binary linear SVM classifier was trained to discriminate

sequences S1 vs. S2 by using neural activities during odor sampling during P1 (30 trials for each trial type). The

trained classifier was used to test how well S1 vs. S2 could be decoded by using the neural ensemble activities at all

task epochs (9 epochs within each positions; P1 – P4). Error bars show SDs and asterisks over bar plots indicates

that the mean decoding accuracy exceeds 95% CIs calculated using the same decoding process but with label-

shuffled data. (B) The same as in (A) except that the SVM classifier was trained by using neural activities at P4 odor

time.
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Training Training

P1 (past) P4 (future)

Figure 5. Cross-epoch decoding of positions. Trials in S1 and S2 were combined in each task epoch at 4

positions. Each dot represents a single trial in the high-dimensional ensemble activity space (n = 60 trials for each trial

type). A binary linear SVM classifier was trained to discriminate positions P1 vs. P4 by using neural activities at odor

sampling. The trained classifier was then used to decode neural ensemble activities at all task epochs (9 epochs

within each positions; P1 – P4). Error bars show SDs and asterisks over bar plots indicates that the mean decoding

accuracy exceeds 95% CIs calculated using the same decoding process but with label-shuffled data. Positive values

for decoding accuracy indicate that activity at a particular position/epoch was more often classified as P4 than P1,

while negative values means the opposite.
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Training of P1 vs. P4 (odor time) and Test at Other Epochs

Figure 6. Cross-epoch decoding of positions for each rat. (A-D) Cross-epoch decoding of P1 versus P4

was performed on each rat, using the same approach and conventions as in Figure 5. (E-H) Poke latency as in

Figure 1E, calculated separately for each rat. Two-way ANOVAs were performed with two factors (sequence

and position). Statistical results were shown on the right side of bar plots.

Poke latency

A (Rat #1; n = 605 neurons)

B (Rat #2; n = 210 neurons)

C (Rat #3; n = 470 neurons)

D (Rat #4; n = 283 neurons)

E (Rat #1; n = 18 sessions)

F (Rat #2; n = 13 sessions)

G (Rat #3; n = 15 sessions)

H (Rat #4; n = 18 sessions)
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A B (Rats #2-4; n = 963 neurons)

Figure 7. Cross-epoch decoding of positions based on performance. (A) The

histogram of poke latency differences between rewarded and non-rewarded trial types.

Rats #2-4 showed substantially larger differences in poke latencies than Rat #1 (B) Cross-

epoch decoding of P1 versus P4 was performed on sessions from Rats #2-4, which showed

large differences in their poke latencies prior to rewarded vs. non-rewarded trials,

consistent with use of the sequences to predict upcoming reward. This analysis used the

same approach and conventions as in Figure 5.
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