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Abstract

Deep Reinforcement Learning (Deep RL) agents have in recent years emerged as successful
models of animal behavior in a variety of complex learning tasks, as exemplified by Song
et al. [2017]. As agents are typically trained to mimic an animal subject, the emphasis in
past studies on behavior as a means of evaluating the fitness of models to experimental
data is only natural. But the true power of Deep RL agents lies in their ability to learn
neural computations and codes that generate a particular behavior—factors that are also
of great relevance and interest to computational neuroscience. On that basis, we believe
that model evaluation should include an examination of neural representations and
validation against neural recordings from animal subjects. In this paper, we introduce a
procedure to test hypotheses about the relationship between internal representations of
Deep RL agents and those in animal neural recordings. Taking a sequential learning
task as a running example, we apply our method and show that the geometry of
representations learnt by artificial agents is similar to that of the biological subjects’,
and that such similarities are driven by shared information in some latent space. Our
method is applicable to any Deep RL agent that learns a Markov Decision Process, and
as such enables researchers to assess the suitability of more advanced Deep Learning
modules, or map hierarchies of representations to different parts of a circuit in the brain,
and help shed light on their function. To demonstrate that point, we conduct an ablation
study to deduce that, in the sequential task under consideration, temporal information
plays a key role in molding a correct representation of the task.

1 Introduction

For decades Reinforcement Learning (RL) [Sutton and Barto, 2018] has proven instru-
mental in our understanding of the neural mechanisms of reward-driven learning and
decision making by way of providing a formal language to explain a wealth of empiri-
cal phenomena [Niv, 2009]. The scope and complexity of what this framework could
formalize broadened dramatically when, in recent years, researchers coupled RL with
Deep Learning [Goodfellow et al., 2016]—giving rise to what is commonly referred to as
“Deep RL” [Botvinick et al., 2020, Dabney et al., 2020, Song et al., 2017, Wang et al.,
2018]. For example, Wang et al. [Wang et al., 2018] showed how an RL model that
uses recurrent neural networks (RNN) [Hochreiter and Schmidhuber, 1997] helps explain
meta learning in the prefrontal cortex. Dabney et al. [Dabney et al., 2020], as another
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example, extended the notion of dopamine-driven value learning from expected reward
to reward distribution, to help explain how the brain manages uncertainty in the reward
distribution. Across studies, it is compelling to witness that it is possible to have a Deep
RL agent learn to perform a task given only the same stimuli and reinforcement schedule
as an experimental subject.

For all the enthusiasm surrounding Deep RL in the neuroscientific literature, however,
existing studies seldom look beyond behavior for evaluation, with few exceptions [Bernardi
et al., 2020, Dabney et al., 2020, Kao, 2019, Yang et al., 2017, Zhang et al., 2018, 2020].
This focus on whether or not models correctly predict an observed behavior means that
much of the literature, when formulating or evaluating a model, ignores the factors that
generate that behaviour. That approach, as we argue below, is misguided, wasteful, and
insufficient.

It is misguided because models as complex as Deep RL agents can produce arbitrary
behaviors with trivial adjustments. Simply arriving at a particular behavior that
happens to correlate with that of a biological subject’s, therefore, says nothing about
the similarity or dissimilarity of the neural mechanisms that generated that behavior. It
is wasteful because it ignores the often rich representations that Deep Learning models—
more precisely Deep Neural Networks (DNNs)—are known to learn. That power to
learn latent neural codes for perceptual observations and hidden structures, after all,
is what has fueled great strides on myriad scientific fronts such as natural language
processing, computer vision, and reinforcement learning (c.f., Botvinick et al. [2020] and
references therein). By not examining the learnt representations and investigating their
potential link to neural recordings obtained from the brain, one risks discarding valuable
information.

Finally, a narrow focus on behavior alone is insufficient because neural computations
and codes are, in many cases, of greater interest than the behavior to which they lead.
Consider, for instance, one of the more prominent hypotheses on the function of the
orbitofrontal cortex (OFC), which argues that the OFC is part of a circuit that learns
a “cognitive map” of the task space [Behrens et al., 2018, Constantinescu et al., 2016,
Garvert et al., 2017, Schuck et al., 2016, Wilson et al., 2014, Zhou et al., 2019, 2021].
That hypothesis, by its very definition, rests on the notion of the formation and evolution
of neural representations.

For the reasons above, it is encouraging to witness a shift, albeit a still-inchoate
one, towards more in-depth analyses of Deep RL agents [Kao, 2019, Yang et al., 2017,
Zhang et al., 2018, 2020], the focus on qualitative rather than quantitative assessment
notwithstanding. One study by Bernardi et al. [Bernardi et al., 2020] stands out as
the authors attempt to characterize abstraction quantitatively: Observing that neural
representations in the brain of monkeys encode latent variables of a reversal-learning
task, the authors test how accurately a linear readout of variables from neural recordings
generalizes to the unseen portion of the data. An accuracy bounded away from random
chance is taken to suggest that the brain has learnt an abstract representation of the
task features.

While encouraging, these incipient ideas do not yet offer a systematic way of testing
hypotheses about neural representations and examining the internal representations
in Deep RL agents. Few studies [Zhou et al., 2019, 2021] address inherent challenges
in analyzing neural codes such as manifold misalignment due to inconsistencies in the
number of recorded neurons, among other factors. None to date, to the best of our
knowledge, directly compares artificially learnt representations with biological ones for
reinforcement learning problems. Stating and testing hypotheses on the space of neural
representations are largely absent from the literature and remain a black art.

In this work, we set out to address the points above. Our goal is to show that, by
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raising a series of targeted questions, it is easy to reason about the spaces of neural
representations in general. In particular, given two or more disparate sets of neural
representations—obtained from machines, subjects, or both—we investigate (a) whether
they are geometrically similar, (b) whether an observed geometrical similarity is driven by
common latent factors, and (c) whether those common factors encode similar information.

These research questions probe what causes behavioral similarities and help us shift
away from analyzing just the symptoms. In other words, if a Deep RL model behaves
the same way as a biological subject on a particular task, the questions we raise here
help to determine what factors, if any, contribute to that similarity. These factors can
be viewed as the constructs one ultimately wants to discover, identified via modelling of
task performance and validated in neural data.

As we unpack these research questions, we discuss specific technical challenges. We
show, for example, how a combination of standard dimensionality reduction and manifold
alignment techniques facilitates a direct comparison of otherwise incompatible sets of
representations. Building on Representational Similarity Analysis [Kriegeskorte et al.,
2008, Popal et al., 2020] and utilizing non-parametric statistical tests, we show how one
may assess significance of measured similarities between representational spaces. Finally,
as a testament to the generality of this method, we compare the representational space of
an artificial agent with a biological subject, and through an ablation study, demonstrate
how our methods can be used to decide which Deep Learning components lead to more
accurate models of neural data.

Throughout this work, we ground our discussion in the learning task of Zhou et al.
[2021], stating and testing hypotheses in that context. In that study, rats learn to solve
an odor sequence problem and generalize their knowledge to structurally-similar but
perceptually-different problems. During training, the authors record different sets of OFC
neurons on different days, thereby capturing neural representations from the population.
As one of the objectives of our study is to compare models with subjects, we train a
Deep RL agent with an RNN on the same task and record its internal representations.
We then apply our analysis to the two sets of representations.

We note that our method is agnostic to the specific task at hand and we only choose to
focus on a particular task for concreteness. We chose this particular task for two reasons.
First, as already alluded to, neural representations are key to examining the cognitive
map hypothesis. Second, as the focus of the task is on abstraction and generalization
from one problem to another, it gives us the opportunity to apply our method to compare
neural recordings from one problem with recordings from another, both obtained from
the same set of biological subjects. That last point means that, in the end, we can use
our method to compare biological neural representational spaces not just with artificial
ones but also with other biological spaces, thereby establishing a baseline.

The remainder of this paper is organized as follows. We begin, in Preliminaries, with
a short overview of the sequence learning task [Zhou et al., 2021] and a description of a
simple Deep RL agent that will be used as a possible model of the OFC in the context of
an odor sequence problem. Methodology provides a detailed introduction to the three
research questions that comprise our method, and the motivation for each. In Results,
we apply our method to the datasets of neural recordings from Zhou et al. [2021] and our
artificial agents. We discuss these results and the scope of applicability of the method
in Discussion.

3

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448556


1 2 5 6 7 8

P1 P2 P3 P4 P5 P6

3 4 5 6 7 8

S1a

S1b

9 10 13 14 15 16

11 12 13 14 15 16

S2a

S2b

S1b S2a S1a S2a

S1aS2b...

S2b S1a S2a

S1b

Problem A

Problem B

Problem C

Problem D

Problem E

Light Poke Odor Unpoke Choice OutcomeTrial

Figure 1: Illustration of the odor sequence task [Zhou et al., 2021]. Top: A trial is made
up of a number of events: “Light” event to signal that the animal should go to the odor
port; “Poke” event occurs when the animal enters the odor port; “Odor” event is when
a trial-specific odor is released; “Unpoke” and “Choice” events when the animal leaves
the odor port and makes a decision; and, finally, “Outcome” is when the outcome of the
trial is revealed to the animal. Left: Trials (individual squares) are annotated with their
odor identifier (1–16). Six trials put together in positions “P1” through “P6” make up a
“sequence.” Whether a trial is rewarded (blue) or not (red) is a function of the sequence
it is in and its position within the sequence. The reward distribution is the same in all
four sequences with the exception of positions P4 and P5 in sequence S2b. Center: A
series of 80 sequences alternating between S1 and S2 result in 480 trials, which we call a
“problem.” Right: The task is a series of five problems, where each problem has its own
unique set of 16 odors (i.e., odor 1 in Problem A is different from odor 1 in all other
problems). The animals spend 15 days on each problem.

2 Preliminaries

As noted earlier, we tie the presentation of our methodology to the work of Zhou et al.
[2021], stating and testing hypotheses for their task for concreteness. To give context,
then, we briefly describe the task itself and the neural data acquired in that study in The
Odor Sequence Problem. Moreover, our methodology requires neural network-based
artificial agents to serve as models of animal behaviour, in the manner introduced in Song
et al. [2017]. We developed two Deep RL agents for the odor sequence task, similar
to those in past studies [Song et al., 2017, Wang et al., 2018] that have shown to be
reasonable models of the prefrontal cortex. These are described in Artificial Agent.

2.1 The Odor Sequence Problem

The goal of the “odor sequence” task in Zhou et al. [2021], broadly, was to study the
role of the orbitfrontal cortex (OFC) in abstraction and generalization. The research
question there concerned how rats learn to solve a complex problem and generalize what
they learn to other structurally-similar problems. We review the design of their task in
this section.

The odor sequence task, illustrated in Figure 1 (Right), is a series of five independent
“problems,” labeled A through E. Subjects spend 15 days on one problem and subse-
quently proceed to the next one in alphabetical order. These problems are instances of
a common template, all sharing the same task structure but each using a distinct set of
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odors as stimuli. It suffices then to describe a single problem.
A problem is a succession of 80 “sequences.” It is constructed by a repeated arrange-

ment of four unique sequences—S1={S1a, S1b} and S2={S2a, S2b}—that alternate
between S1 and S2; in the end, there are 20 occurrences of each, as illustrated in
Figure 1 (Center). A sequence itself is made up of 6 positions, where each position is,
deterministically, either “rewarded” or not. Sequences S1a, S1b, and S2a share the same
reward distribution, whereas in S2b, the rewards for positions 4 and 5 are reversed, as
shown in Figure 1 (Left).

Finally, in each position of every sequence a “trial” takes place—that, then, results
in 24 unique trials. In a trial, a light cues the dispensing of an odor that has been
prescribed for that position and sequence. Upon the light cue (“light” event), the subject
must move to the odor port (“poke” event), must receive the odor (“odor” event), and
must leave the port (“unpoke” event) to ultimately choose to visit a sucrose well or
not—whether a reward is found in the well depends on the reward status of the current
position. This is depicted in Figure 1 (Top).

2.2 Neural Data

During a fixed time period before and after every event in every trial (e.g., light, poke,
odor, unpoke), single-unit neuronal activity in the subjects’ OFC is recorded. Pre-event
time is set to 200ms and the post-event time to 600ms, with spike counts averaged within
100ms bins. That results in 8 time points per event per neuron. We highlight that,
the set of recorded neurons in each animal is not consistent over days and problems.
We refer the reader to Zhou et al. [2021] for a more comprehensive description and a
technical discussion of the neural recordings.

Zhou et al. [Zhou et al., 2021] found that as subjects navigate this complex task—from
trial to trial, sequence to sequence, and problem to problem, all as a continuum—they
learn the reward distribution and discover the problem template. That such structure
discovery is noteworthy is because it happens despite the fact that the perceptual signals—
the odors—vary between problems. More notable still is the evolution of neuronal activity
in the OFC: As the days progress, OFC neurons become more selective, leading to more
refined firing patterns that, in effect, come to distill the knowledge required to solve this
sequential task and to generalize to other structurally similar tasks.

Throughout this work, we take as the neural representation of an event the firing
rate of all recorded neurons, through all 8 time points, concatenated into a single vector
of values. By putting together these values from the light, poke, odor, and unpoke
events, we arrive at the neural representation of a trial. That choice mirrors the method
of Zhou et al. [2021]. We elaborate the precise construction of neural representations
in Methodology. Finally, as we are interested in the outcome of learning, rather than its
evolution, we generally limit our analysis to the OFC representations from the final day
of training (i.e., day 15) on each problem unless indicated otherwise.

2.3 Artificial Agent

We use a standard neural network-based reinforcement learning agent that has proven
particularly effective at modeling a number of learning tasks in the prefrontal cortex [Song
et al., 2017, Wang et al., 2018]. For reasons that will become apparent shortly, we refer to
this agent as A3cRnn. In this section, we describe the agent’s input, architecture, output,
and training procedure. We will also present an ablated variant, dubbed A3cFfn, that
lacks the ability to model temporal signals. But, to give context to our discussion, we
begin with a description of the simulated task.
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2.3.1 Simulated Odor Sequence Problem

The task on which we train our reinforcement learning agents is a reduction of the odor
sequence problem. The number of problems and the structure of sequences remain as
before, but what takes place within a trial and the array of actions available to the agent
take a different form. In particular, a simulated trial consists only of two events, light
and odor, and the agent may only choose between three actions: going to the odor port,
going to the sucrose well, and staying idle.

In the light event, we present to the agent the light cue, an identifier that is the same
across all problems. The correct action in this case is to “go to the odor port.” All other
actions result in a reward of −1 and an immediate transition to the next trial. In the
event the agent takes the correct action, it enters the odor event but receives no reward
(i.e., a reward of 0).

In the odor event of a trial, the agent receives an odor identifier whose value depends
on the position and sequence of the trial—there are 16 distinct odors in each problem.
The sets of odors are disjoint between problems, resulting in a total of 80 identifiers
representing all five sets of odors. This arrangement rests on the assumption that the
animals are able to differentiate all 80 odors. There are two meaningful actions once the
agent experiences an odor: A positive action to collect its reward or a negative action to
stay idle. The agent earns a reward of +1 if it takes the positive action in a rewarded
trial, no reward if it takes the negative action in a non-rewarded trial, and a reward of
−1 in all other cases, including when the agent mistakenly chooses the “go to the odor
port” action.

We should note that, the adopted discretization of the space of events and actions,
while greatly simplifying the problem setup and minimizing the run-time of our experi-
ments, ultimately does not affect our analysis. For example, even though we included
the light event in the simulated task, the agent quickly learns to disregard it as irrelevant
to the objective of the task, and learns a trivial mapping from “light” (state) to “going
to the odor port” (policy). We observe a similar pattern with the addition of other event
types that are inconsequential to the outcome and can be safely ignored by the agent.
On the other hand, the odor event, as in the real experiments, contains the factors that
lead up to the decision.

2.3.2 Input to the Agent

At each of the two events, the agent observes an identifier which either represents “light”
in the light event or an “odor” in the odor event. In order to present such observations
to the agent, we encode their identifiers as a categorical variable that can take one of 81
distinct values. In particular, we employ a one-hot encoding scheme where each identifier
is a binary vector of 81 elements with only one set element. For example, light would be
represented as 〈1, 0, . . . , 0〉, the first odor of the first problem as 〈0, 1, 0, . . . , 0〉, and so
on.

In addition to the observation above, we explicitly make the chosen action and its
reward outcome from the preceding event available to the agent as input. Actions are
represented using one-hot encoding as a vector of three binary values, one slot for every
available action. Reward, on the other hand, is represented as an integer. These input
features together form the input layer in our model.

2.3.3 Agent Architecture and Training

Before we delve into the details of the models used in this work, it is important to note
that we are less interested in modeling per se than we are in validation. In other words,
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Figure 2: A3cRnn model architecture. (Left) The input layer (bottom, green boxes) is
made up of the following: The current observation at time t which is either the code for
“light” or an “odor”; action taken by the agent at the previous time step (t− 1); and
reward given to the agent at time t− 1. A feed-forward network then encodes the input
to the network (middle, blue box). The encoded input is then passed onto an RNN unit
(top, red box). A linear readout of the output of the RNN approximates the value of the
current state. The agent also learns a policy by defining the probability of taking each
of the three actions to be proportional to a linear function of the output of the RNN,
one per action. The agent then executes the action that has the highest probability, and
receives a reward from the environment accordingly—the executed action and earned
reward are fed to the model as input at the next time step. (Right) We unrolled the
network to illustrate the recurrent nature of the model, where the output of the RNN at
time t is used as input to itself at t+ 1. This is highlighted by the dashed line connecting
the RNN module to itself at the next time step. Note that, by removing this recurrent
connection, the model reduces to A3cFfn.

we are not concerned with the specific choices of Deep Learning components and their
hyperparameters. Instead, we assume there exists a pool of models to choose from, and
propose a method to evaluate their validity purely based on neural representations.

Following the reasoning above, we adopt an agent architecture drawn from prior
work [Song et al., 2017, Wang et al., 2018] that is effective in modeling sequential
tasks from a behavioral standpoint. We then perform an ablation to create a second
architecture, and contrast these two candidates in the remainder of this article. Our
choice of hyperparameters is also guided by previous work [Song et al., 2017] with a
limited fine-tuning effort aimed at reducing the capacity of the agents while still ensuring
that the agents behave reasonably. We must, however, note that the method we present
here can be used just as easily to search through any other extension or ablation, or
other choices in the space of architectures and hyperparameters.

With the note above in mind, we are ready to present the specifics of our agents.
We use a feed-forward neural network to encode the input to the model. This network
consists of three layers with 256, 128, and 64 artificial neurons respectively. Each neuron
uses the Rectified Linear Unit (ReLU) activation function, and is fully connected to the
neurons in the next layer.

We compose the input encoder above with a function whose role, we hypothesize, is
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to emulate the OFC, and whose activity is the analogue of neural data. This function,
in fact, is the only component that is different between the agents: In A3cRnn, it is a
Gated Recurrent Unit [Cho et al., 2014], a specific type of the more general Recurrent
Neural Network (RNN), whereas in A3cFfn, it is a single layer of ReLU-activated
neurons. This small architectural difference between the two agents manifests in the
way the two learn to solve the same task: A3cRnn reuses certain neural codes from
previous time steps to arrive at a decision in the current time step, thereby injecting
its knowledge of past states directly into learning and decision making. In contrast,
A3cFfn has no such mechanism to incorporate information about preceding states. A
comparison of these two models should, therefore, highlight a fundamental aspect of
the function of the OFC. In both agents, the number of hidden neurons is 32. Figure 2
shows the model architecture for A3cRnn and highlights its difference with A3cFfn.

The output layer, much like the input layers, is common between the two agents.
It consists of value and policy networks. The value network is a linear function whose
output is an approximation of the value of the current state. The policy network consists
of three linear functions (one per action), that together, using a softmax mapping,
determine a probability distribution over actions: The agent takes the action with the
largest probability.

We train the agents using the Asynchronous Advantage Actor-Critic (A3C) al-
gorithm [Mnih et al., 2016], where the cost function under optimization is a linear
combination of the policy gradient, temporal difference of the value [Sutton and Barto,
2018], and a regularizing entropy term (with weight 0.3). Gradient updates are applied
every 120 steps, where one step equals the completion of one event. We use a discount
factor of 0.5 when approximating returns.

Finally, during training, the agent completes 100 episodes per problem, where an
episode is defined as visiting all 480 trials of a problem. We note that, deciding when to
terminate the training was based on behavior: In our experiments, we observed that 100
episodes were often sufficient to guarantee convergence.

3 Methodology

We present a detailed description of our methodology in this section. We begin with the
transformation of neural recordings—obtained from a biological or artificial source—into
neural representations whereby a trial is represented by a vector of real numbers. In
this way, we translate questions about neural data into questions about the geometrical
properties of abstract vectors. Such a formulation allows us to remain agnostic to the
source of representations, thereby facilitating comparisons of neural recordings within
and across subjects and agents.

Given this abstract notion, we ask whether two sets of neural representations have
similar structures: Is the degree of similarity between pairs of trials consistent across
problem instances or sources? To that end, we formulate a null hypothesis in terms
of representational similarities and, to test it, introduce a non-parametric statistical
procedure. We then describe a procedure to test whether the structural consistency
present in two or more spaces is driven by common latent factors. Finally, we lay out a
procedure to test the information contained in those common latent factors. In particular,
with this method we can determine whether knowing representations in one space allows
us to deduce the optimal decision in another space.
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3.1 Obtaining Neural Representations from Neural Data or Ar-
tificial Agents

Neural representations, whether obtained from biological subjects or artificial agents,
form the basis of our analyses. While every dataset of neural representations is naturally
only meaningful in the context of a specific task and, in that sense, is unique, we can
nonetheless conceptualize every such dataset in the same way: As a function that maps
an input (e.g., state, trial, or event) to a vector of real numbers. For example, in the
odor sequence task described earlier, neural recordings from the OFC can be viewed as
a mapping from a particular event to a vector of (normalized) activity levels recorded
from the OFC as the subject experienced that event. We take this view and only require
that such a mapping exist; our method is agnostic to how this mapping is formed.

In this section, we make the above more concrete by describing how neural recordings
from the OFC or from any of the artificial agents under consideration can be stated as a
function of visits to trials. This formalism simplifies the discussion in upcoming sections
and, further, serves as an example that can be extended in obvious ways to arbitrary
datasets of neural representations.

For brevity, let us introduce the following notation to compactly refer to the ter-
minology reviewed earlier. We denote by T the set of 24 unique trials, {S1a1–S1a6,
S1b1–S1b6, S2a1–S2a6, S2b1–S2b6}, and let t serve as an index into T . Each trial is
visited 20 times through the course of a single problem. We denote a visit by v ∈ V with
V = [20] being the index set of all visits from 1 to 20. Finally, we let p be a particular
problem, one of P = {A,B,C,D,E}.

3.1.1 OFC Neural Representations

We define ofcs
p : T × V → Rns

p to be a mapping from visits of trials in problem p ∈ P
to its nsp-dimensional OFC representation obtained from subject s. Said differently,
ofcs

p(t, v) is the representation expressed in the OFC of subject s when it visits trial t

for the vth time in problem p. In this work, as in Zhou et al. [2021], this representation
is a concatenation of a subject’s OFC neuronal activity during the light, poke, odor, and
unpoke events. Note that, in general, we may not assume that nsp = nsq for p, q ∈ P if
p 6= q.

For consistency with Zhou et al. [2021], we work at the ensemble level. That means
aggregating the functions ofcs

p along subjects, to form one monolithic, imagined subject
whose OFC is an amalgamation of the participating subjects’. Following that work,
given nine subjects, we define ofcp : T × V → Rnp as follows:

ofcp(t, v)
def
= ofcs1

p (t, v)⊕ ofcs2
p (t, v)⊕ . . .⊕ ofcs9

p (t, v),

where⊕ is the concatenation operator. It is clear that np =
∑9

i=1 n
si
p is the dimensionality

of the final representation. Finally, to reduce the effect of noise on subsequent analyses,
we apply Principal Component Analysis (PCA) to the data and keep enough dimensions
to explain 80% of the total variance. Figure 3(a) illustrates ofcA(t, v) for all t ∈ T
and v ∈ V using t-SNE [van der Maaten and Hinton, 2008], a dimensionality reduction
procedure that projects high-dimensional data onto a two-dimensional plane to facilitate
visualization.

Given the setup of the odor sequence problem, the formulation above results in 480
distinct vectors representing as many visits that make up a single problem. We often
find it useful to talk about the representation of a trial instead regardless of when that
trial is visited. To facilitate such discussions and analyses, we define the representation
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of a trial t to be the mean of the 20 vectors that represent visits to t:

ofcp(t)
def
=

1

20

20∑
v=1

ofcp(t, v). (1)

3.1.2 Agent Neural Representations

Similar to OFC representations, we use Agentp : T × V → Rm to express an agent’s
mapping from visits of trials to m-dimensional representations. When the agent is
A3cRnn, Agentp is the output of the hidden layer of the RNN. For A3cFfn, it is
instead the output of the last layer of its feed-forward network. Note that, unlike the
biological subjects, agents’ output dimension, m, is constant across problems.

Mirroring once more how OFC representations are prepared, we train an agent 100
times from a random initial state and concatenate their individual representations to
form Agentp(·, ·):

Agentp(t, v)
def
= Agent(1)

p (t, v)⊕Agent(2)
p (t, v)⊕ . . .⊕Agent(100)

p (t, v),

where Agent(i)
p (·, ·) is the output of the ith trained agent. We reduce the dimensionality

of the raw representations using PCA to 32. Lastly, as with Equation (1), we define
Agentp(·) to produce the visit-independent representation of a trial.

3.1.3 Geometry of Neural Representations via Representational Dissimilar-
ity Matrices

As discussed in the preceding section, we view trials as vectors in a high-dimensional
Euclidean space. But while that formalism is conceptually convenient, working with a
potentially large set of vectors can quickly become cumbersome. We therefore seek to
summarize an entire dataset of neural representations in a single object that captures some
property of interest. One such property is the pairwise distance between vectors. That
information begins to paint a picture of how vectors are arranged in a representational
space, with larger distances taken to signal higher dissimilarity.

With that perspective, we define the distance between a pair of trials to be the
angular distance between their respective representations. More precisely, if u and v
are representations of two trials in Rn (e.g., u and v may be the output of ofcp or
Agentp), we record the following quantity as a measure of their distance:

d(u,v) =
1

π
arccos

〈u, v〉
‖u‖‖v‖ , (2)

where 〈·, ·〉 denotes the inner product of two vectors, and ‖·‖ is the Euclidean norm.
This distance is between 0 and 1, with a larger value indicating a higher degree of
dissimilarity.

Using the pairwise distance between all trials in T , we construct a representational
dissimilarity matrix (RDM) such as the one rendered in Figure 3(b). If M is an RDM,
its (i, j)th entry, Mij , records the distance as measured above between two trials, one
corresponding to row i and another to column j. Naturally, M has zeros on its main
diagonal as those entries reflect the distance between a trial and itself. Finally, by
construction, an RDM is symmetric (i.e., MT = M with T denoting the transpose
operator).

RDMs appear in virtually every step of our study, illustrated and quantified. We
plot RDMs to facilitate a visual inspection of patterns of dissimilarity among trials. In
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Figure 3: Visualization of sample representations and their representational dissimilarity
matrix (RDM). Figure (a) plots the function ofcA(·, ·) using t-SNE. There are a total
of 480 points in this scatter plot, each of which is the OFC representation of a visit to a
trial in problem A. Colors represent positions and the four shapes (circle, down triangle,
up triangle, and star) correspond to the four sequences (S1a, S1b, S2a, S2b). We observe
that, broadly, visits to rewarded trials appear closer to each other but farther from visits
to non-rewarded trials. The heatmap in (b) is a rendering of the RDM computed from
representations in (a). The rows and columns represent 24 unique trials, grouped by
position and, within each group, sorted by sequence. Darker shades indicate a distance
closer to 1. By construction, the RDM is symmetric with zeros on the main diagonal. We
have marked positions P4 and P5 of sequences S2a and S2b with a blue (for rewarded)
or red (for non-rewarded) filled disc to highlight the irregularity in S2b.

such illustrations we render the complete matrix as a heatmap. On the other hand,
when quantifying RDMs it suffices to consider only the off-diagonal entries in the lower
triangle (i.e., Mij for all i > j of an RDM M). That is because RDMs are symmetric by
construction and, as a result, the lower half encapsulates all that is needed for analysis.
We perform this masking transformation when answering quantitative questions.

3.2 Is Representational Geometry Independent of Problem In-
stance and Source?

We have just seen how an RDM summarizes a representational space. Specifically, an
RDM captures the geometry of a dataset of neural representations by encapsulating
pairwise distances between vectors. A natural question then is, given two datasets,
possibly obtained from separate sources, can we compare the similarity of the structure
of their respective spaces using RDMs? That constitutes our first question.

When investigating the inquiry above for the odor sequence problem, we use the
following null hypothesis: Subjects and agents learn to represent all elements of the task
structure but do not learn to delineate sequences. This entails that trial representations
do not contain any information about sequences and, as such, are interchangeable
within a single position. That means, for example, that swapping the representations of
trials S1a3 and S2b3—both describing distinct trials in position P3—must, with great
likelihood, lead to the same conclusion as the original sequence assignment.
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Figure 4: Visualization of a permutation under the null assumption and its resulting
RDM. (a) is copied from Figure 3(a) depicts the original representations of 480 trial
visits from problem A, where colors show positions and shapes sequences. (b) displays
the same set of representations as in (a), but where, for every position, visits are assigned
a new sequence that is chosen at random (i.e., colors stay the same but shapes change).
(c) is the RDM resulting from permuted representations shown in (b).

In answering our first question under the null hypothesis above, we take the correlation
between a reference RDM and a candidate RDM as the test statistic. More precisely, it
suffices to compute Spearman’s rank correlation between the off-diagonal, lower-triangle
entries of the two RDMs as a measure of the correlation between the two matrices, as
done in previous studies [Popal et al., 2020]. Measuring rank correlation is justified
because it is only of interest if the relative dissimilarity between trials is consistent across
RDMs; crucially, we do not expect that trial dissimilarities correlate in absolute terms
across problems.

Note that, when computing the correlation as explained above, it simply does not
matter what data generated the RDMs; so long as datasets can be turned into RDMs
we can easily compute the correlation between them. For example, in the context of the
odor sequence problem, we can measure the correlation between an RDM generated by
OFC recordings and another generated from an agent’s data.

Having computed our test statistic, we must now determine its significance. To
that end, we use a permutation test to assess the likelihood that our test statistic is
observed merely due to chance under the null regime. This test requires two steps. First,
we transform the candidate RDM so as to eliminate any information about sequences.
We do so by taking trial representations of each position and assigning them to a
randomly selected sequence. In the resulting set, representations preserve all their
original attributes, but are now presumed to have originated from a possibly different
sequence—a valid configuration under the null regime. Figure 4 describes the procedure
above pictorially. We then use this transformation to produce 100, 000 transformed
RDMs and record their correlation with the reference RDM.

The step above results in a distribution of correlations should the null hypothesis
hold, referred to as the null distribution. In the second and final step, given the null
distribution, we estimate the p-value of the test statistic as the number of permutations
for which the test statistic exceeded the observed value plus 1, divided by the total
number of permutations.
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3.3 Are Geometrical Similarities Driven by Common Latent
Factors?

The previous section described an approach to determine whether trials as represented
in one space have a geometrical arrangement that is similar to those in another space.
But simply because two structures look similar does not necessitate that the factors
that give rise to the structure also correlate. For example, a set of vectors maintains
the same structure when all vectors in the set are rotated by the same degree in the
space, yielding perfect correlation between RDMs. In that sense, our method thus far
is inconclusive, leading us to a second question: Is the similarity between two RDMs
driven by correlated latent factors?

We answer the question above by investigating whether the structure of trials in a
reference space can be accurately approximated from latent factors that are correlated
between the reference and candidate spaces. For example, had we projected OFC
representations of problem A (reference) onto the subspace that is correlated with
problem B (candidate), would we observe similar pairwise distances between trials? In
this section, we present a method to answer such questions.

The main difficulty in examining this new question lies in finding factors that are
correlated between two spaces, as the reference and candidate spaces are assumed to
be misaligned (e.g., have a different number of dimensions). In other words, there is no
shared subspace that is “common” between the two spaces in the usual sense. To resolve
that difficulty, we use Canonical Correlation Analysis (CCA). CCA is an optimization
problem where, given two (misaligned) spaces X and Y , it finds subspaces X ′ and Y ′,
where each latent feature in X ′ (Y ′) is a linear combination of features in X (Y ), with
the constraint that the nth feature from X ′ maximally correlate with the nth feature
from Y ′. Throughout this work, with a slight abuse of terminology, whenever we speak
of the common space between two spaces, we are referring to the correlated subspaces as
determined by CCA. We use a regularized, generalized CCA [Bilenko and Gallant, 2016]
in our work.

Taking this into account, our procedure consists of the following steps. First, we split
the set of visits from the reference space into even and odd subsets, thereby forming
disjoint training and test partitions. We then apply CCA to find a 10-dimensional
common space between the space of the training set and a given candidate space. Using
the resulting transformation, we project representations in the test set onto the latent
space. Finally, we compute one RDM from the test set in the original reference space,
and another from the projected test set in the latent space, and measure their correlation.
We repeat this procedure by swapping the roles of even and odd visits. The mean of the
two measurements becomes our test statistic. Figure 5 gives a schematic overview of
this procedure.

Having obtained a test statistic, we now turn to assessing its significance with respect
to our null hypothesis using a permutation test. As required, we permute the candidate
representations to obtain a new candidate space that is valid under the null assumption.
With this new candidate, we follow the procedure above to calculate the correlation
between RDMs of the original and projected test sets of the reference representations. By
repeating this process 100, 000 times, we approximate the null distribution and estimate
the p-value as described earlier.

3.4 Do Common Latent Factors Encode Similar Information?

The method in the preceding sections allow us to determine whether the geometry of
trials is consistent between representational spaces and whether that consistency is due
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Figure 5: Diagram of a procedure to measure the contribution of common features to the
geometric structure of trials. First, the reference representations are split into disjoint
training and test visits. Given the training set and a candidate set of representations
(e.g., from another problem or from an agent), Canonical Correlation Analysis (CCA)
finds transformations into a lower-dimensional latent space. We then use the resulting
transformation to project the test visits to the reference latent space. Finally, we measure
the correlation between the RDM of the test set in the original space and the RDM of the
test set in the latent space. We use the same procedure to obtain the null distribution
but where the candidate representations are first permuted under the null assumption.

to common latent factors. But geometrical similarity and the existence of common latent
factors do not imply that the two spaces encode similar information. It remains, then,
to examine how informative the latent factors are in the following sense: Does having
full knowledge of one representational space enable us to accurately deduce an optimal
decision in another representational space? We develop a method to investigate that
final question.

We formulate the question above as a decoding task in which, given the representation
of a visit to a trial, the decoder predicts the optimal action. At a high level, we train
a decoder on the representations from two randomly selected problems (training) and
evaluate it on the remaining problems (test). While the test representations always come
from the OFC, the training representations originate either from the OFC or agents: If
from the OFC, we refer to the decoder as dofc, otherwise we denote it by dA3cRnn or
dA3cFfn depending on which agent provides the representations. We repeat the process
above multiple times, each time choosing a different configuration of training and test
problems, and report the mean and 95% confidence intervals.

One challenge in training a decoder that can work across spaces is the issue of
misalignment, as touched on previously. We address that challenge as we did before
using generalized CCA [Bilenko and Gallant, 2016]. We start with five sets, each
consisting of 480 representations from a unique problem. Two of these sets are obtained
from the OFC or the agent, depending on the type of decoder being trained, and the
remaining three come from the OFC. From each of these sets, we leave out one visit to
every trial. That leaves 456 representations in each set, with 24 held out for evaluation
purposes. By applying CCA to these sets, we find 10-dimensional aligned latent spaces
which we refer to as the common space.

Now that representations are in the common space, we take the two training problems
to train a 5-Neighbors classifier. Given a test representation, such a classifier finds 5
representations closest to it—in the sense of Equation (2)—and returns the majority
vote as the predicted action. Finally, we project the held-out representations from the
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Figure 6: Diagram of the decoding method. Top row: We randomly divide the five
problems into training and test classes—in this example, problems C and E are in the
training class and the remaining three in test. In the case of dofc, the representations
for the training problems are obtained from the OFC, whereas in dA3cRnn and dA3cFfn

they come from the respective agent. The representations for the test problems, on
the other hand, always come from the OFC. From these sets, we leave out one visit
per trial from every problem for evaluation purposes. Finally, we apply CCA to the
(misaligned) spaces of the remaining representations to obtain 10-dimensional, correlated
latent spaces. Bottom row, left: We project the representations from the training
problems onto the latent spaces using the learnt CCA transformations, and train a
decoder that predicts the optimal action given a representation. Bottom row, right:
We project the held-out visits (24 in total) from the test problems onto the latent space
found by CCA and measure the accuracy of the decoder on the resulting set. Decoder:
We use a 5-Neighbors classifier. Given an unlabeled point (black), it finds 5 labeled
points (green and red) from the training set that are closest to it (connected with dashed
lines). The output of the decoder is the majority vote of these 5 points. In the illustrated
example, the predicted label of the test point is green with 3 votes (60%).

test problems onto the common space, and evaluate the accuracy of the decoder on the
projected set. This procedure is depicted in Figure 6.

4 Results

Having described our method, we now analyze the datasets of biological and artificial
neural recordings from the odor sequence problem. We start by revisiting the key
research question of Zhou et al. [2021]: Does OFC neuronal activity evolve to encode a
representation that is common across different problem instances? We put this question
in terms of the three inquiries of our methodology. We present the result of our analysis
in the first subsection, confirming and extending the original findings.

We turn next to a direct comparison of the representations learnt by agents with
neural recordings. As noted before, the behavior of the agents considered in this work
is similar to the animals. Through our analysis, we wish to verify whether the neural
codes generating those behaviors are also similar between the machine and the brain.

Our results focus primarily on showing that our methodology can be applied to
neural recording data to achieve the goals we proposed, given a reasonable choice of
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agent. While we also show that our methodology can be used to compare models,
we purposefully do not include any results on modelling behavior in isolation, as that
question is already amply tackled in the literature (e.g., Song et al. [2017]).

4.1 Comparing OFC Activity between Problems

Our first results concern the neural activity in the subjects’ OFC only. As Zhou et al.
[2021] found, OFC neuronal activity evolves to encode task features that are common to
all problem instances. Here we re-examine their findings through the lens of the method
developed in this work.

The first question asks whether the representational space learnt in one problem
(say, A) is similar to those learnt in other problems, and if so, whether that similarity is
significant. A negative result (i.e., insignificant correlation) would indicate that the data
do not support the findings of Zhou et al. [2021] under the particular null hypothesis
stated in Methodology, whereas a positive result clears the path for us to proceed to our
second inquiry.

As discussed earlier, the OFC neural representations during Problem A can be
summarized as an RDM, shown in Figure 7(a). The same can be done for every other
problem, e.g. the RDM from Problem B is shown in 7(b). Finally, a sample RDM
generated under the null hypothesis is shown in in 7(c). To answer our first question, we
compute the correlation between a reference RDM (Problem A) and those of problems
B, C, D, and E, shown as the blue bars in Figure 7(d). The figure also shows the
mean correlation of each problem RDM with those of 100, 000 RDMs under the null
distribution, and the resulting p-value. As is evident from this figure, the geometry of
the representations learnt in the OFC appear to correlate significantly across problems.

Now that we have established that representations exhibit similar geometrical prop-
erties across problems, we ask our second question: Are similarities driven by common
latent factors? We apply the procedure illustrated in Figure 5 to this dataset and plot
the results in Figure 7(e).

As shown in Figure 7(e), the RDM generated from representations in Problem A can
be approximated, with a high degree of accuracy, by RDM reconstructions generated
from latent factors that are in common with representations in other problems. We can
see, for example, the similarity between an original RDM depicted in Figure 7(f) and its
reconstruction from the common space in 7(g), which stands in contrast with 7(h), its
reconstruction from the space that is in common with a null RDM.

We conclude, given the discussion above, that there exist common factors that drive
the geometrical similarities observed earlier. But the existence of such factors alone does
not reveal anything about the information they encode and, as such, is inconclusive.
That brings us to our third and final inquiry: Does the information contained in the
common space help us find the optimal policy in an unseen problem? We apply the
decoding method to find out.

We train and evaluate the decoder dofc, using the procedure explained in earlier
sections, with the training and test set of representations both originating from OFC
recordings. We repeat this exercise for all 15 days; that is, we train and evaluate dofc on
data from day 1, day 2, through the final day, separately. Figure 7(m) plots the decoding
accuracy over the course of learning, with the confusion matrix for the final day depicted
in Figure 7(i). As a confirmation of the hypotheses of Zhou et al., additional days of
learning brings about a higher cross-problem decoding accuracy. This indicates that,
the common latent factors used by the decoder are not only similar geometrically, but
that they also encode abstract information that enables generalization to other problems.
Furthermore, continued learning leads to a refinement of such factors.
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Figure 7: Examination of OFC representations from the final day of learning. The first column shows sample represen-
tational dissimilarity matrices (RDM) constructed from OFC representations for (a) Problem A, (b) Problem B, and
(c) the null hypothesis, H0, that sequences in Problem B are indistinguishable. RDMs are partitioned by positions P1
through P6, with rows and columns within each partition corresponding to sequences S1a, S1b, S2a, and S2b. Darker
shades indicate greater angular distance between representations of intersecting rows and columns. Figure (d) shows
Spearman’s rank correlation between RDMs of Problem A with Problems B through E, along with the performance of
H0 and noise ceiling (“Self”), the correlation of even visits of Problem A with odd visits. p-values noted in the figure
are measured with a permutation test consisting of 100,000 permutations, with asterisk marking statistical significance
(p-value < .05). Figure (e) similarly plots correlations, but where the reference is the test portion of Problem A and
the object of comparison is a reconstruction of that same test set from the low-dimensional space that is common to
Problem A and other problems, the null hypothesis, or itself. The third column visualizes sample RDMs generated from
(f) the original representations for Problem A, and those reconstructed from the space common between Problem A
and (g) Problem B and (h) the null hypothesis. The rightmost column presents the results of a decoding experiment
where the objective is to determine the action (go/no-go) given the OFC representation of trials from one of three test
problems, and where the decoder—denoted by dofc—is trained using OFC representations of the remaining two problems.
Figure (i) shows the optimal decision in each position within each of the four sequences. Figures (j), (k), and (l) are
renderings of the first three latent factors from the train and test sets, which track task features (value, odor overlap, and
positional alternation, respectively). Finally, (m) depicts the decoder’s accuracy over time, where data from each day of
learning is used to train and evaluate a decoder for that day. Error bars show 95% confidence intervals.)

It is also instructive to take a look at the common latent factors between problems,
which are used as input by the decoders. Figures 7(j), (k), and (l), respectively, display
the first three factors shared between problems. Each of these orthogonal factors
represents information for all six positions, across four sequences each. Interestingly,
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they correspond closely with the key aspects needed to perform the task: position value;
uniqueness of odors to positions; and, positional alternation.

4.2 Comparing OFC Representations with A3cRnn

Whereas in the preceding section we studied generalization across problems in the OFC,
in this section our main objective is to validate the A3cRnn model against the OFC
recordings. To do that, we follow the same recipe as before and make similar inquiries
into the space of representations.

While no modification to the method is necessary to facilitate this analysis, the
datasets being compared now come from different sources. In the first inquiry, for
example, we compare the geometrical similarity of the subjects’ space with the agent’s
for each problem separately, as shown in Figure 8(d). For the second inquiry, as reflected
in Figure 8(e), we measure how accurately a problem’s OFC RDM can be approximated
from what it has in common with the agent’s representations. For each problem, we
follow the procedure illustrated in Figure 5, using the OFC RDM as reference and
the A3cRnn as the candidate. Finally, when training a decoder as part of the third
inquiry, the training set is supplied by the agent while the test set is from the OFC—in
other words, we are interested in the accuracy of a decoder trained on the agent’s
representations when applied to the OFC representations. This follows the procedure
illustrated in Figure 6, using agent’s representations of two problems as training data,
and OFC representations of the remaining three problems as test data.

Figure 8 shows the output of our analysis. These results are broadly consistent with
what we observed in the preceding section. Remarkably, the A3cRnn agent has learnt
representations that are significantly correlated with the neural recordings from the
OFC, with common latent factors contributing significantly to structural similarities.
Furthermore, decoding accuracy improves significantly as the subjects and agents go
through their respective training. This suggests that, in addition to learning similar
representations for the problem, experimental subjects and agents develop them in
the same, gradual manner across the training regime. Finally, factors that maximally
correlate between the OFC and agent spaces correspond with task features.

4.3 Comparing OFC Representations with A3cFfn

We have observed that A3cRnn learns representations that are similar to what is
represented in the OFC in the context of the odor sequence problem. A3cRnn was
designed to be a simple agent capable of learning the task and exhibiting a behavior
across problems that is similar to the experimental subjects’ decisions. Our methodology
does not require a minimal agent, and determining what a minimal agent might look
like depends on the experimental task. However, we believe that one aspect of the
model design—the presence of recurrent connections—is critical for performance, and our
methodology provides an elegant way of demonstrating it. To analyze its contribution,
we replace the recurrent neural network with a feed-forward one, resulting in the A3cFfn
variant described in Artificial Agent.

Using the same procedure as before, we arrive at Figure 9. From the example
RDMs rendered in this figure, we see that much of the geometrical structure is shared
between the OFC and A3cFfn, and in fact, much of this structure can be accurately
reconstructed from the common space. However, the representations for positions P4
and P5 in sequence S2 are misplaced in the representational space of A3cFfn. That
seemingly minor mismatch leads to an effect that is detectable by our analysis: The
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Figure 8: Examination the relationship between representations from OFC and A3cRnn on the final day or episode of
learning. The first column shows sample RDMs constructed for Problem A from (a) OFC, (b) A3cRnn, and (c) the null
hypothesis, H0, that the agent does not differentiate between sequences. RDMs are partitioned by positions P1 through
P6, with rows and columns within each partition corresponding to sequences S1a, S1b, S2a, and S2b. Darker shades
indicate greater angular distance between representations of intersecting rows and columns. Figure (d) shows Spearman’s
rank correlation between RDMs of OFC with A3cRnn, H0, and itself for Problems A through E. p-values noted in
the figure are measured with a permutation test consisting of 100,000 permutations, with asterisk marking statistical
significance (p-value < .05). Figure (e) similarly plots correlations, but where the reference is the test portion of the OFC
dataset and the object of comparison is a reconstruction of that same test set from the low-dimensional space that is
common to OFC and A3cRnn, the null hypothesis, or itself. The third column visualizes sample RDMs generated for
Problem A from (f) the original OFC representations, and those reconstructed from the space common between OFC
and (g) A3cRnn and (h) H0. The rightmost column presents the results of a decoding experiment where the objective is
to determine the action (go/no-go) given the OFC representation of trials from one of three test problems, and where the
decoder—denoted with dA3cRnn—is trained using A3cRnn representations of the remaining two problems. Figure (i)
shows the optimal decision in each position within each of the four sequences, as determined by dA3cRnn. Figures (j), (k),
and (l) are renderings of the first three latent factors from the train (agent) and test (OFC) sets, which track task features
(value, odor overlap, and positional alternation, respectively). Finally, (m) depicts the accuracy of dA3cRnn over time,
where data from each day and its corresponding episode are used to train and evaluate a decoder. For reference, the
figure also shows the performance of dofc, a decoder that is trained and evaluated on OFC data only. Error bars show
95% confidence intervals.

correlation between RDMs, whether in the original form or after reconstruction, are not
statistically significant for a majority of problems.

Perhaps more interestingly, a decoder trained on representations from A3cFfn and
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Figure 9: Examination the relationship between representations from OFC and A3cFfn on the final day or episode of
learning. The first column shows sample RDMs constructed for Problem A from (a) OFC, (b) A3cFfn, and (c) the null
hypothesis, H0, that the agent does not differentiate between sequences. A distant matrix is partitioned by positions P1
through P6, with rows and columns within each partition corresponding to sequences S1a, S1b, S2a, and S2b. Darker
shades indicate greater angular distance between representations of intersecting rows and columns. Figure (d) shows
Spearman’s rank correlation between RDMs of OFC with A3cFfn, H0, and itself for Problems A through E. p-values
noted in the figure are measured with a permutation test consisting of 100,000 permutations, with asterisk marking
statistical significance (p-value < .05). Figure (e) similarly plots correlations, but where the reference is the test portion
of the OFC dataset and the object of comparison is a reconstruction of that same test set from the low-dimensional space
that is common to OFC and A3cFfn, the null hypothesis, or itself. The third column visualizes sample RDMs generated
for Problem A from (f) the original OFC representations, and those reconstructed from the space common between OFC
and (g) A3cFfn and (h) H0. The rightmost column presents the results of a decoding experiment where the objective is
to determine the action (go/no-go) given the OFC representation of trials from one of three test problems, and where the
decoder—denoted with dA3cFfn—is trained using A3cFfn representations of the remaining two problems. Figure (i)
shows the optimal decision in each position within each of the four sequences, as determined by dA3cFfn. Figures (j), (k),
and (l) are renderings of the first three latent factors from the train (agent) and test (OFC) sets. Finally, (m) depicts the
accuracy of dA3cFfn over time, where data from each day and its corresponding episode are used to train and evaluate a
decoder. For reference, the figure also shows the performance of dofc, a decoder that is trained and evaluated on OFC
data only, and dA3cRnn, a decoder that is trained on data from A3cRnn. Error bars show 95% confidence intervals.

evaluated on the OFC does significantly poorly compared to dofc and dA3cRnn. Moreover,
its accuracy plateaus immediately after the first episode of training, suggesting that the
agent quickly learns the representation of a default sequence, but appears unable to
learn an optimal policy for the reversals.
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Figure 10: A comparison of A3cRnn and A3cFfn. For each problem, the OFC
representations are split into train and test subsets. The train portion is aligned with
a target representational space (either self, A3cRnn, and A3cFfn), and the resulting
transformation is then applied to the test portion. The correlation between the RDM of
the original and transformed test set are reported in the figure, with asterisks marking
statistical significance (p-value < .05).

A look at the factors shared between the two spaces reveals no obvious correspondence
with task features, and in some cases, highlights what the agent learns incorrectly. For
example, Figure 9(j) captures the value of each trial correctly with the notable exception
of the reversals (i.e., positions P4 and P5 in S2). Figure 9(k) does not represent any
of the task features, and, while Figure 9(l) appears to encode positional alternation, it
again fails to correctly capture the reversals.

We compare A3cRnn and A3cFfn directly in terms of their performance on the
second inquiry: The accuracy of the reconstruction of representational space of the OFC
from what it has in common with one agent versus the other. This is plotted in Figure 10.
It is clear that A3cRnn performs significantly better than A3cFfn on all problems.

5 Discussion

We began this work with a simple observation: The computational neuroscience literature
increasingly utilizes Deep RL to explain complex behavioral data. Seeing as the strength
of Deep Neural Networks rests in their ability to learn rich latent representations, we
argued that validating a Deep RL model must include an examination of the representa-
tional space, not just behavior. This is especially important in neuroscientific studies,
where the neural mechanisms that cause a particular behavior have a higher scientific
value. Crucially then, just as we validate the behavior of an artificial agent against real
behavioral observations, we must compare neural codes learnt by a Deep RL agent with
neural recordings obtained from a biological subject as the two navigate and learn the
same task.

On the basis of the arguments above, we proposed a methodology to test hypotheses
about representational spaces learnt by artificial agents as a combination of three key
questions. The first question tests whether the representational similarity between two
spaces is higher than what might be expected by chance, measured against a stringent null
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regime. The basic idea of comparing the geometry of the spaces of neural representation
against those of a reference artificial agent or human subject is not novel and is known
as Representational Similarity Analysis [Kriegeskorte et al., 2008] or RSA. However, if
the similarity is significant, it allows the posing of a second question: Is this similarity
driven by factors that are shared between the two spaces, or by factors that are entirely
different—a question that RSA does not answer. In extending RSA to the second
question, we use a cross-validated, non-parametric statistical procedure that is based on
Canonical Correlation Analysis of neural representations, as illustrated in Figure 5.

Finally, the third question asks whether the common latent factors encode similar
information. To answer, we test whether a decoder trained to predict the optimal action
from latent factors in one domain (e.g. artificial agent) will do so accurately when
tested on latent factors in another domain (e.g. experimental subject). We introduce a
non-parametric statistical procedure combining Canonical Correlation Analysis and a
classifier to carry this test, illustrated in Figure 6.

The questions and techniques we introduce are applicable to any reinforcement
learning task that can be characterized as a Markov Decision Process (MDP), thereby
covering a broad range of neuroscientific experiments, in particular, those described
in Song et al. [2017]. This methodology is thus a stepping stone towards validating Deep
RL models of behavior using neural data.

We demonstrated the utility of our method by re-analyzing a recently published
study of transfer learning between several odor sequence tasks. We trained Deep RL
agents to solve these tasks, which had hitherto not been accomplished, and used our
methodology to show that they develop a representational space that contains similar
information as the animal subjects. This study of representations can be pursued at any
level of granularity (e.g., the individual events making up a trial).

Perhaps more interestingly, our method can help determine the necessity or role of
individual components in the architecture of a Deep RL agent, and the appropriateness
of their hyperparameters, even if a modification of that nature leads to a small effect.
For example, after removing a recurrent mechanism from our default artificial agent, it
became apparent that the resulting representational space deviated significantly from
the biological space. Even though the behavioral effect was limited to two trials (out
of 24), the deformation of the geometrical space was enough to quickly establish the
importance of temporal signals in solving the task.

We believe that, with the rise in interest in Deep RL agents and their integration
into computational models of natural phenomena in neuroscience [Botvinick et al., 2020],
our proposal for a methodology to validate agents with neural data is warranted and, in
fact, necessary. The method presented here is applicable to any Deep RL agent that
learns an MDP; so long as there are neural representations to be examined, our method
can be readily used. This generality enables researchers to assess the suitability of more
advanced Deep Learning modules or map hierarchies of representations to different parts
of a circuit in the brain, and help shed light on their function.
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