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One dominant hypothesis about the function of the orbitofrontal

cortex (OFC) is that the OFC signals the subjective values of

possible outcomes to other brain areas for learning and

decision making. This popular view generally neglects the fact

that OFC is not necessary for simple value-based behavior (i.e.

when values have been directly experienced). An alternative,

emerging view suggests that OFC plays a more general role in

representing structural information about the task or

environment, derived from prior experience, and relevant to

predicting behavioral outcomes, such as value. From this

perspective, value signaling is simply one derivative of the core

underlying function of OFC. New data in favor of both views

have been accumulating rapidly. Here we review these new

data in discussing the relative merits of these two ideas.
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Introduction
In everyday life, both humans and animals choose

between different alternative outcomes or goods (e.g.

what to eat for dinner); this has been described as

value-based decision making, since it is presumed to

reflect subjective valuation of the different options [1].

The rubric underlying such value-based decision making

assumes two consecutive steps: valuation of available

options on a common scale and action selection based

on these valuations. With the finding of neural correlates

of this scalar value in the brain, especially in the OFC, this

view has gained popularity [1,2]. OFC hence has become

widely seen as a dedicated neural substrate for calculating

subjective value, which other brain areas then use to
www.sciencedirect.com 
guide choices among available outcomes or goods [3].

This is despite the relative lack of studies showing that

OFC is fundamentally necessary for deciding between

goods based on value, the widespread finding of value

correlates in many other brain regions, and the lack of any

definition of value that is independent of behavior [4,5�].
With an emphasis on new data, below we will consider

each of these problems, and then explore another emerg-

ing view suggesting that OFC plays a critical role in

representing task structure and is only necessary for

value-based behavior when such a representation – a

cognitive model or map – is required for calculating

the value underlying normal choice.

Neural correlates of value in the OFC
Perhaps the most influential evidence for the idea that the

OFC’s core function is to signal value comes from primate

recordings on an economic choice task [3,6], in which

subjective value is measured though choice behavior.

Although this idea certainly has a long history before this

work, earlier studies generally emphasized the represen-

tation of associative information or associative conjunc-

tions [7–10]. Work using the economic choice task was

arguably the first to clearly dissociate neural correlates of

‘economic’ value, or what is called revealed preference,

from sensory and motor aspects of the underlying associa-

tions. That is, some OFC neurons appeared to respond

only based upon the scalar value of the goods on offer and

not about any of the unique information comprising the

choice (cues, outcome features or quantities, direction or

type of response). Of course, such correlates can only be

interpreted within the narrow parametric space of the task

(i.e. the specific cues used and particular outcomes on

offer), but nevertheless the activity of this category of

neurons, along with subsequent results in humans using

fMRI [11,12], have been taken as strong evidence that

OFC is fundamental to determining the value underlying

our choices.

And correlative evidence supporting this role continues to

accumulate; in various choice tasks, neuronal activity in

the OFC correlates with value in fMRI imaging,

electrophysiological, and calcium imaging studies

[13–20]. These value representations are adaptive to

outcome and context changes [15,21,22], modulated by

gaze fixation [23] and covert shift of attention [24], and

supported by a mixture of temporally dynamic and stable

coding schemes [25]. OFC neurons projecting to striatum

predominantly encode integrated value among several

other decision variables [26], and even theta oscillations
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2 Value-based decision-making
in the OFC are reported to track the values of new

reward-predictive cues during learning [27].

When interpreting these data, however, it is important to

bear in mind that what can be found in a correlative study

is constrained by particular task designs. While each of

these studies found value encoding in the OFC, each was

designed for this purpose. And many do not employ the

multidimensional approach that characterizes the eco-

nomic choice studies. Instead, for practical reasons, these

designs assume that neural correlates tracking just a

single dimension of reward, such as likelihood, amount,

or caloric content, necessarily represent value. Neural

correlates tracking value across only one reward dimen-

sion may not be abstractly tuned ‘value’ neurons. Indeed

even two dimensions provide a relatively weak test of the

null hypothesis, given the variability of single-unit activ-

ity and the amount of training the subjects typically

receive, which may drive changes in how specific

outcomes within a narrow range (i.e. juices) are repre-

sented. As a result, tasks using few reward dimensions to

determine value likely overestimate the number of neu-

rons that represent a multi-dimensional, truly abstract

value. Consistent with this idea, this permissive definition

of value has led to observations of value coding

being prevalent across the entire brain [4], even in the

cerebellum [28] and hypothalamus [29]. Against this

interpretation, while some OFC neurons do appear to

strongly encode information that can be interpreted as

value, nearly all neural recording studies have found that

OFC neurons also respond to a variety of other task

variables.

For instance, individual OFC neurons can be found with

activity tuned to cue and outcome identity [16,30], spatial

locations [31,32], action selection [14,33,34], integration

of prior and current information [14,18], decision confi-

dence [26,35], and task rules [36]. Even in now-classic

studies of neuroeconomic value, in which value is deter-

mined from integration of multiple reward features, many

OFC neurons represent the value of only some options,

and still more respond based on sensory features of the

goods [6]. Although not necessarily contradictory to the

idea that the OFC signals value, this heterogeneity of

findings does raise the possibility that value representa-

tion is not the core function of OFC, since it fails to

explain so many neural correlates found there, even when

the area is faced with what is a very narrow range of

outcomes compared to what we experience in our daily

lives.

Possibility of value as part of task structure
representation
How can we account for such diverse neural correlates?

An alternative hypothesis, which would predict such

diversity, proposes that OFC represents states or

‘locations’ and their transitions in the task space
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(i.e. the task structure or cognitive map) [37,38��]. If this

is the case, value can be seen as one important aspect or

derivative of such a representation, particularly in the

experimental settings typically employed in behavioral

neuroscience studies. This hypothesis has considerable

support from both older work as well as recent correlative

studies in humans [39,40��,41–44], non-human primates

[45], and rodents [31,46,47,48��,49–51].

For example, in perhaps the first human imaging study to

focus on this specific question [40��], subjects were

trained to judge the age (young or old) of a face or a

house that were spatially superimposed in the same image

(Figure 1a). Whether to switch to judge a face or a house

on a given trial was determined by a change of age on the

previous trial. This created 16 unique trial types or states,

the identification of which had to be inferred through trial

transitions (Figure 1b). These ‘hidden’ states, when

necessary for behavioral learning and decision making,

were found to be uniquely decodable from BOLD signals

in the OFC (Figure 1c). The data provide direct evidence

that the OFC represents task states that are crucial for

cognitive mapping.

Critically, such hidden states are not the same as value,

however their appropriate identification can clearly be

useful for predicting value. For instance, performing

properly in reversal tasks – something that is classically

dependent on the OFC – can be facilitated by recognizing

the hidden ‘reversal’ state as distinct from initial learning

[37]. This allows a new behavior to be acquired more

quickly because it does not require first unlearning or

modifying the prior learning, since it is not relevant in the

new reversal state.

In an effort to show the interaction between the repre-

sentation of value and states, we recently recorded single-

unit activity from OFC while rats were performing a

simple odor discrimination task in which performance

reflected a knowledge of the odor sequence across trials

[48��]. Like the work above, proper responding in this

task required tracking of prior events in order to discrimi-

nate hidden states predictive of reward (Figure 2a). In this

context, we found that current value was a prominent

feature of both the single-unit and neural-ensemble

activity, but that the task states – positions in the

sequence – were also decodable independent of this value

information (Figure 2b,c). This included the hidden

states, which were only discriminable based on

prior events. The dissociation of value from structural

information about the task suggests that the two are

multiplexed in the OFC but separable at the neural-

ensemble level, which argues against the idea that value

is the ultimate output of the OFC and in favor of the

proposal that encoding of structure is one fundamental

function of the OFC.
www.sciencedirect.com
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Figure 1

(a)

(b) (c)
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Task state representations in human OFC. (a) Participants were asked to keep judging the age (young versus old) of one of the two categories

(face or house) until an age change occurred. When an age change occurred, participants had to switch to judging the other category starting

from the first trial after the change. The task rules created an alternating mini-block structure of judging either the age of faces or houses. (b)

Possible transitions between 16 task states. Each circle denotes a particular state. Arrows indicate possible transitions. (c) Average classification

of 16 task states identified from fMRI patterns within the OFC (blue bar) and following a permutation test (black bar). Dashed lines, chance level;

error bars, s.e.m. *p < 0.05. Plots recreated from Ref. [40��].
The representation of hidden states independent of

reward or other confounding factors is also evident in

another odor sequence task, in which two alternating

sequences of odor-guided trials were used to mimic a

continuous T-maze [46]. Like the continuous T-maze,

the two sequences have a common central path (the same

odors at each position) with unique entry and exit

paths (different odors at the same positions)

(Figure 2d). Critically, there is no difference in value

between the two sequences at any position — from a

value-based perspective, there is simply a single loop in

the task structure. Recording single unit activity in OFC

in this task, we found that neurons nevertheless differ-

entiated the sequences at all positions; successful decod-

ing was even observed at positions where both odor

identities and values were exactly the same (i.e. hidden
www.sciencedirect.com 
states) (Figure 2e). Thus, these data demonstrate that

OFC neurons are able to disambiguate hidden states,

even in the absence of differences in value or observable

sensory inputs.

Encoding of structural information about the environ-

ment is also evident in OFC during sensory precondi-

tioning. In this setting, when the reward is completely

absent, OFC has been found to acquire representations

of sensory-sensory associations in both rats [49] and

humans [52]. Specifically, during the initial phase of

the task – when two value-neutral sensory cues are

paired – activities of both single units in rats and BOLD

signals in humans change to reflect the associations

between the two cues by exhibiting similar response

patterns.
Current Opinion in Behavioral Sciences 2021, 41:1–9
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Figure 2
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Value-dissociable task state representations in rat OFC. (a) Odor sequence task. Each number (0–15) indicates a unique odor that was used as a

cue in a single trial of the ‘go, no-go’ odor discrimination task. The 16 different odor cues were presented in four sequences (S1a, S1b, S2a, and

S2b). There are six trials or positions (P1–P6) within each sequence. Arrows indicate the transitions between sequences. The task design created

24 task states. (b) Hypothesized confusion matrices resulted from decoding of 24 task states. (c) A linear discriminant analysis (LDA) was

performed on the original neural data recorded from the rat OFC with the labels of reward value, to dissociate neural representations of the

current value and current state. The three panels show actual confusion matrices as results of classification of the 24 task states using original

neural data (left) and the first linear discriminant component (middle; similar to the pattern of the ‘current value’ model), and other linear

discriminant components (right; similar to the pattern of the ‘current state’ model). (d) Another odor sequence task consisting of two alternating

odor sequences (S1 and S2). This task was intended to resemble a continuous T-maze. Note that S1 and S2 have identical reward availability at

each position (P1–P4). (e) Mean classification accuracy of S1 versus S2 using recorded OFC neurons at all positions. Error bars, s.d. * denotes

that mean decoding accuracy exceeds 95% confidence interval from label-shuffled decoding. Plots in (a), (b) and (c) recreated from Ref. [48��]; (d)

and (e) from Ref. [46].
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Figure 3
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Dependence of behavior on OFC in the rat economic choice task. (a) Illustration of the economic choice task. Rats choose by pressing one of the

two touch screens displaying two-dimensional offers of food pellets that differ in identity and quantity. (b) Optogenetic inactivation of OFC during

the cue period did not change the economic choice behavior of well-trained rats. (c) One of the food pellets was pre-fed before well-trained rats

were tested in the economic choice task. (d) In control sessions, the effect of pre-feeding was related to whether and how much the pre-fed pellet

was preferred. Specifically, if the preferred pellet was pre-fed, choices shift towards the pellet, otherwise choices shifted away. With OFC

inactivation, this relationship was abolished, as if the current pellet value was no longer consistently related to choice. (d) Introducing novel offer

pairs in the economic choice task. Solid lines show food pellet pairs that rats were previously trained on. Dotted lines indicate food pellet pairs

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 41:1–9



6 Value-based decision-making
OFC is required for model-based value
computation
Correlative studies discussed above collectively suggest

that the value signaling is not something peculiar in the

OFC but can be seen as part of the task structure

representation. One could argue, however, that the task

structure is represented for the sole purpose of computing

value within the OFC, and thus the value signaling is still

the major functional output of OFC. If this is the case,

disrupting OFC function should always disrupt behav-

ioral performance in value-based decision-making tasks,

without affecting behavior when value is not at issue. And

yet this is not what causal data shows. Instead, it is easy to

find value-based behavior – even in explicit-choice tasks

– in which inactivating OFC has no effect, and there are

examples of behavior that do not seem to involve value at

all that still require the OFC.

Value-based behavior that is independent of the OFC is

easy to find and ranges from Pavlovian conditioning to

operant responding to discrimination learning [4].

Indeed most behaviors in experimental settings, the

vast majority of which are value-based, do not require

OFC. However the most striking such evidence comes

directly from a rodent version of the economic choice

task first developed in monkeys to search for value

representations [6]. In this task, rats were trained to

make choices between pairs of food pellets [53��]
(Figure 3a). On each trial, the type and quantity of

each pellet on offer was indicated by the shape and

number of segments of two symbols presented on touch

screens in front of the rat. By touching the appropriate

screen, the rat gained access to the type and quantity of

the pellet associated with the symbol. Optogenetically

inactivating either lateral [53��] or medial [54] OFC had

no effect on the choice behavior of well-trained rats in

this setting, as indexed by the subjective preference,

steepness of the choice curve, or transitivity between

different pairs of goods (Figure 3b). Similar negative

results were also reported in a choice task requiring

information about probability and amount to be inte-

grated; value-based choices on individual trials were

not affected by lateral OFC inactivation [55]. While

there are examples to counter these reports, in subjects

that have less experience in the task or in which the

OFC is artificially overactivated instead of being inhib-

ited [13,56��], the above work demonstrates that in very

well-controlled settings, the OFC is not strictly neces-

sary for value-based behavior, even when current value

must be integrated across multiple dimensions of infor-

mation. This should not be possible if the OFC’s core

function is to calculate economic value.
that rats had not experienced together previously. The modified task tested

‘goods space’ describing the preference between food pellet pairs. (e) It to

novel food pellet pairs. Plots in (a) and (b) recreated from Ref. [53��]; (c) and

Current Opinion in Behavioral Sciences 2021, 41:1–9 
Notably, at the same time that OFC is not necessary for

value-based choices in the above studies, it is critical for

value updating that relies on model-based inference. This

was first evident in Pavlovian reinforcer devaluation, an

iconic behavioral task to assess model-based inference. In

this task, subjects are initially trained to associate a cue

and a reward. After the outcome is paired with an unpleas-

ant experience such as LiCl injection or satiety, normal

subjects update value of the cue through its model-based

association with the outcome, which is reflected in

reduced responding to the cue during the probe test.

Work using this procedure has shown repeatedly that

OFC manipulations disrupt normal changes in behavior

after devaluation [57,58,59��,60,61��,62–64]. This conclu-

sion is consistent with many other studies using different

behavioral tasks, such as overexpectation [65] and sensory

preconditioning [66,67], in which model-based inference

is needed for value updating. It is worth noting that

testing the necessity of OFC in classic instrumental

devaluation tasks has led to negative results, suggesting

a dissociation in the support of strictly instrumental versus

Pavlovian representations [58,68,69], although effects of

OFC manipulations on instrumental devaluation have

been reported when prior learning of the operanda has

occurred, perhaps due to the increased complexity of the

setting that may introduce Pavlovian information regard-

ing hidden states [70].

If representing the task structure underlying model-based

behavior is the core function of the OFC, then it predicts

that OFC should be necessary for economic choice when

the underlying value depends on a model of the task for

its construction. In well trained subjects, it is unclear

when this is true; however one way to force this would be

to devalue one of the goods on offer before the critical

testing. As in the Pavlovian devaluation task described

above, this manipulation would force the use of a model

to determine the value underlying normal behavior. We

have recently done exactly this experiment, inactivating

the lateral OFC in rats during economic choice when one

of the outcomes was pre-fed before test (Figure 3c). In

this setting, we found that inactivation again had no effect

on the established choice, while at the same time it

disrupted the normal effects of pre-feeding on the choice

[53��,71] (Figure 3d).

Of course, deficits in devaluation tasks after OFC manip-

ulations, while consistent with a wider role, do not nec-

essarily require one; instead they may simply reflect a

more limited role in value-based decision-making [3]. To

argue that behavioral deficits caused by OFC dysfunction

actually reveal a failure in the general use of model-based
 how rats would incorporate new information to modify an established

ok longer for OFC-inactivated rats to reach a stable preference for

 (d) from Ref. [71]. (c) and (d) from Ref. [74��].

www.sciencedirect.com
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information, outside the realm of value signaling per se,
requires evidence of impairments in behavior that is

orthogonal or even independent of value. Though this

at first seems far-fetched, it turns out that such evidence is

actually relatively abundant. For instance, OFC is

required for outcome-specific Pavlovian-to-instrumental

transfer [58,68], outcome-identity unblocking [72], facili-

tated learning caused by differential outcomes [73], and

for proper sensory learning in the first phase of sensory

preconditioning [59��]. In each of these tasks, the critical

role of the OFC is difficult to explain as signaling of scalar

value, while being easy to explain as related to represent-

ing task structure. This is particularly true in a recent

study showing that optogenetically inactivating OFC

during the initial cue-cue learning during sensory pre-

conditioning abolishes value inference in the later the

probe test [59��]. The initial cue–cue learning occurs in

the absence of any overt value or reward; there is no

behavioral response. However learning of the valueless

sensory associations is critical to the later inference; thus

these results demonstrate that the OFC is required for

building associative models, even in the absence of any

reward. Together with the electrophysiological recording

data on the sensory preconditioning task [49] showing

that OFC keeps track of these sensory–sensory associa-

tions even before rewards are introduced, these results

provide clear evidence that OFC is critical for learning

task structure independent of value.

Why would this be? One key aspect of the sensory

preconditioning task is that it involves the acquisition

of new information about the world — the cue pairs have

never been encountered before. This is also true in

economic choice, when subjects first encounter new pairs

of goods; even if they have previously encountered the

two options separately, relating them and accurately

determining subjective preferences when options are

compared for the first time requires new mapping. Inter-

estingly, we have recently found that the OFC is neces-

sary for economic choice under these conditions. That is,

while inactivation of OFC has no effect on economic

choice in our hands once the rats have experienced a pair

of goods together, if we inactivate the lateral OFC in the

very first session with a new pair, then rats show impair-

ments at establishing their initial subjective preference

[74��] (Figure 3e,f). This is true even if the rats have

experienced the pellets many times before as part of other

pairs. This finding suggests that the OFC is necessary for

establishing the relationships between pellets in the

‘goods space’, rather than for using the goods space to

read out the economic value.

Conclusions
There is still a strong belief in the field that the core

function of the OFC is to represent subjective or

economic value, and that this value signal is the main
www.sciencedirect.com 
output from OFC used by other brain areas to form

behavioral plans and instruct action selection. Although

this idea seems to be supported by an abundance of

correlative studies, we argue against the proposal that

value signaling is the core function of the OFC based on

the poor definition of value, the widespread finding of

similar value correlates in most of the brain, as well as

causal data showing that the OFC is often not necessary

for value-based choice. Conversely, OFC is often

required for behaviors for which value is either not

critical or is entirely absent during periods when

OFC is required. Overall, these data are more consis-

tent with the proposal that the primary function of OFC

is to represent task structure, from which value is partly

derived.
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